Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gamma rays from a reverse shock with turbulent magnetic fields in GRB 180720B

Abstract

Gamma-ray bursts (GRBs) are the most electromagnetically luminous cosmic explosions. They are powered by collimated streams of plasma (jets) ejected by a newborn stellar-mass black hole or neutron star at relativistic velocities. Their short-lived (typically tens of seconds) prompt γ-ray emission from within the ejecta is followed by long-lived multi-wavelength afterglow emission from the ultra-relativistic forward shock. This shock is driven into the circumburst medium by the GRB ejecta. which are in turn decelerated by a mildly relativistic reverse shock. Forward-shock emission was recently detected as teraelectronvolt-energy γ-rays. Such very-high-energy emission was also predicted from the reverse shock. Here we report the detection of optical and gigaelectronvolt-energy γ-ray emission from GRB 180720B during the first few hundred seconds, which is explained by synchrotron and inverse-Compton emission from the reverse shock propagating into the ejecta, implying a low-magnetization ejecta. Our optical measurements show a clear transition from the reverse shock to the forward shock driven into the circumburst medium, accompanied by a 90° change in the mean polarization angle and fluctuations in the polarization degree and angle. This indicates turbulence with large-scale toroidal and radially stretched magnetic-field structures in the reverse and forward shocks, respectively, which tightly couple to the physics of relativistic shocks and GRB jets, namely launching, composition, dissipation and particle acceleration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light curves from the radio to teraelectronvolt bands of GRB 180720B.
Fig. 2: Optical lights curve, PDs and PAs of GRB 180720B and nearby stars.
Fig. 3: SEDs from T0 + 80 s to T0 + 300 s and theoretical modelling for time interval II.
Fig. 4: Our polarization model.

Similar content being viewed by others

Data availability

The Fermi-LAT data are publicly available at the Fermi Science Support Center website: https://fermi.gsfc.nasa.gov/ssc/. Swift-XRT and BAT products are available from the online GRB repository https://www.swift.ac.uk/xrt_products. All the raw data from HOWPol and HONIR can be downloaded from the SMOKA data archiving site within the website of the National Astronomical Observatory of Japan: https://smoka.nao.ac.jp/index.jsp. The processed data are available from the corresponding author upon request.

Code availability

The details of the code are fully described in Methods. Code that can reproduce each figure in the paper is available from the corresponding author upon request.

References

  1. Vreeswijk, P. M. et al. GRB 180720B: VLT/X-shooter redshift. GRB Coord. Netw. 22996, 1 (2018).

    Google Scholar 

  2. Abdalla, H. et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature 575, 464–467 (2019).

    Article  ADS  Google Scholar 

  3. Sasada, M. et al. GRB 180720B: Kanata 1.5 m optical/NIR observation. GRB Coord. Netw. 22977, 1 (2018).

    Google Scholar 

  4. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17–L20 (1998).

    Article  ADS  Google Scholar 

  5. Ajello, M. et al. A decade of gamma-ray bursts observed by Fermi-LAT: the second GRB catalog. Astrophys. J. 878, 52 (2019).

    Article  ADS  Google Scholar 

  6. Mundell, C. G. et al. Highly polarized light from stable ordered magnetic fields in GRB 120308A. Nature 504, 119–121 (2013).

    Article  ADS  Google Scholar 

  7. Sari, R. & Piran, T. Hydrodynamic timescales and temporal structure of gamma-ray bursts. Astrophys. J. Lett. 455, L143 (1995).

    Article  ADS  Google Scholar 

  8. Kobayashi, S. Light curves of gamma-ray burst optical flashes. Astrophys. J. 545, 807–812 (2000).

    Article  ADS  Google Scholar 

  9. Wang, X. Y., Dai, Z. G. & Lu, T. Prompt high-energy gamma-ray emission from the synchrotron self-Compton process in the reverse shocks of gamma-ray bursts. Astrophys. J. Lett. 546, L33–L37 (2001).

    Article  ADS  Google Scholar 

  10. Wang, X. Y., Dai, Z. G. & Lu, T. The inverse Compton emission spectra in the very early afterglows of gamma-ray bursts. Astrophys. J. 556, 1010–1016 (2001).

    Article  ADS  Google Scholar 

  11. Zhang, B. & Mészáros, P. High-energy spectral components in gamma-ray burst afterglows. Astrophys. J. 559, 110–122 (2001).

    Article  ADS  Google Scholar 

  12. Fraija, N., Lee, W. & Veres, P. Modeling the early multiwavelength emission in GRB130427A. Astrophys. J. 818, 190 (2016).

    Article  ADS  Google Scholar 

  13. Fraija, N. et al. Theoretical description of GRB 160625B with wind-to-ISM transition and implications for a magnetized outflow. Astrophys. J. 848, 15 (2017).

    Article  ADS  Google Scholar 

  14. Fraija, N. et al. Analysis and modeling of the multi-wavelength observations of the luminous GRB 190114C. Astrophys. J. Lett. 879, L26 (2019).

    Article  ADS  Google Scholar 

  15. Fraija, N. et al. GRB Fermi-LAT afterglows: explaining flares, breaks, and energetic photons. Astrophys. J. 905, 112 (2020).

    Article  ADS  Google Scholar 

  16. Zhang, B. T. et al. External inverse-Compton and proton synchrotron emission from the reverse shock as the origin of VHE gamma rays from the hyper-bright GRB 221009A. Astrophys. J. Lett. 947, L14 (2023).

    Article  ADS  Google Scholar 

  17. Cherenkov Telescope Array Consortium et al.Science with the Cherenkov Telescope Array. Astrophys. J. Suppl. 240, 32 (2019).

    Google Scholar 

  18. Harrison, R. & Kobayashi, S. Magnetization degree of gamma-ray burst fireballs: numerical study. Astrophys. J. 772, 101 (2013).

    Article  ADS  Google Scholar 

  19. Granot, J. & Königl, A. Linear polarization in gamma-ray bursts: the case for an ordered magnetic field. Astrophys. J. Lett. 594, L83–L87 (2003).

    Article  ADS  Google Scholar 

  20. Medvedev, M. V. & Loeb, A. Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697–706 (1999).

    Article  ADS  Google Scholar 

  21. Keshet, U., Katz, B., Spitkovsky, A. & Waxman, E. Magnetic field evolution in relativistic unmagnetized collisionless shocks. Astrophys. J. Lett. 693, L127–L130 (2009).

    Article  ADS  Google Scholar 

  22. Gill, R. & Granot, J. Constraining the magnetic field structure in collisionless relativistic shocks with a radio afterglow polarization upper limit in GW 170817. Mon. Not. R. Astron. Soc. 491, 5815–5825 (2020).

    Article  ADS  Google Scholar 

  23. Gruzinov, A. & Waxman, E. Gamma-ray burst afterglow: polarization and analytic light curves. Astrophys. J. 511, 852–861 (1999).

    Article  ADS  Google Scholar 

  24. Sironi, L. & Goodman, J. Production of magnetic energy by macroscopic turbulence in GRB afterglows. Astrophys. J. 671, 1858–1867 (2007).

    Article  ADS  Google Scholar 

  25. Inoue, T., Asano, K. & Ioka, K. Three-dimensional simulations of magnetohydrodynamic turbulence behind relativistic shock waves and their implications for gamma-ray bursts. Astrophys. J. 734, 77 (2011).

    Article  ADS  Google Scholar 

  26. Duffell, P. C. & MacFadyen, A. I. Shock corrugation by Rayleigh–Taylor instability in gamma-ray burst afterglow jets. Astrophys. J. Lett. 791, L1 (2014).

    Article  ADS  Google Scholar 

  27. Ackermann, M. et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A. Science 343, 42–47 (2014).

    Article  ADS  Google Scholar 

  28. MAGIC Collaboration. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 575, 455–458 (2019).

    Article  ADS  Google Scholar 

  29. MAGIC Collaboration. Observation of inverse Compton emission from a long γ-ray burst. Nature 575, 459–463 (2019).

    Article  ADS  Google Scholar 

  30. Atwood, W. B. et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 697, 1071–1102 (2009).

    Article  ADS  Google Scholar 

  31. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article  ADS  Google Scholar 

  32. Falcone, A. D. et al. The giant X-ray flare of GRB 050502B: evidence for late-time internal engine activity. Astrophys. J. 641, 1010–1017 (2006).

    Article  ADS  Google Scholar 

  33. Nousek, J. A. et al. Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data. Astrophys. J. 642, 389–400 (2006).

    Article  ADS  Google Scholar 

  34. Zhang, B. et al. Physical processes shaping gamma-ray burst X-ray afterglow light curves: theoretical implications from the Swift X-ray telescope observations. Astrophys. J. 642, 354–370 (2006).

    Article  ADS  Google Scholar 

  35. Rees, M. J. & Mészáros, P. Refreshed shocks and afterglow longevity in gamma-ray bursts. Astrophys. J. Lett. 496, L1–L4 (1998).

    Article  ADS  Google Scholar 

  36. Melandri, A. et al. Evidence for energy injection and a fine-tuned central engine at optical wavelengths in GRB 070419A. Mon. Not. R. Astron. Soc. 395, 1941–1949 (2009).

    Article  ADS  Google Scholar 

  37. Reva, I. et al. GRB 180720B : TSHAO optical observations. GRB Coord. Netw. 22979, 1 (2018).

    Google Scholar 

  38. Itoh, R. et al. GRB 180720B: MITSuME Akeno optical observations. GRB Coord. Netw. 22983, 1 (2018).

    Google Scholar 

  39. Kann, D. A., Izzo, L. & Casanova, V. GRB 180720B: OSN detection, fading. GRB Coord. Netw. 22985, 1 (2018).

    Google Scholar 

  40. Crouzet, N. & Malesani, D. B. GRB 180720B: LCO optical afterglow observations. GRB Coord. Netw. 22988, 1 (2018).

    Google Scholar 

  41. Horiuchi, T. et al. GRB 180720B: MITSuME Ishigaki optical observations. GRB Coord. Netw. 23004, 1 (2018).

    Google Scholar 

  42. Schmalz, S. et al. GRB 180720B: ISON-Castelgrande optical observations. GRB Coord. Netw. 23020, 1 (2018).

    Google Scholar 

  43. Zheng, W. & Filippenko, A. V. GRB 180720B: KAIT optical observations. GRB Coord. Netw/ 23033, 1 (2018).

    Google Scholar 

  44. Henden, A. A. et al. VizieR online data catalog: AAVSO photometric all sky survey (APASS) DR9 (Henden+, 2016). VizieR Online Data Catalog II–336 (2016).

  45. Schady, P. et al. The dust extinction curves of gamma-ray burst host galaxies. Astron. Astrophys. 537, A15 (2012).

    Article  Google Scholar 

  46. Laskar, T. et al. Energy injection in gamma-ray burst afterglows. Astrophys. J. 814, 1 (2015).

    Article  ADS  Google Scholar 

  47. Laskar, T. et al. First ALMA light curve constrains refreshed reverse shocks and jet magnetization in GRB 161219B. Astrophys. J. 862, 94 (2018).

    Article  ADS  Google Scholar 

  48. Sari, R. & Esin, A. A. On the synchrotron self-Compton emission from relativistic shocks and its implications for gamma-ray burst afterglows. Astrophys. J. 548, 787–799 (2001).

    Article  ADS  Google Scholar 

  49. Nakar, E., Ando, S. & Sari, R. Klein–Nishina effects on optically thin synchrotron and synchrotron self-Compton spectrum. Astrophys. J. 703, 675–691 (2009).

    Article  ADS  Google Scholar 

  50. Yamasaki, S. & Piran, T. Analytic modeling of synchrotron-self-Compton spectra: application to GRB 190114C. Mon. Not. R. Astron. Soc. 512, 2142–2153 (2022).

    Article  ADS  Google Scholar 

  51. Wang, X.-Y., Liu, R.-Y., Zhang, H.-M., Xi, S.-Q. & Zhang, B. Synchrotron self-Compton emission from external shocks as the origin of the sub-TeV emission in GRB 180720B and GRB 190114C. Astrophys. J. 884, 117 (2019).

    Article  ADS  Google Scholar 

  52. Fukushima, T., To, S., Asano, K. & Fujita, Y. Temporal evolution of the gamma-ray burst afterglow spectrum for an observer: GeV–TeV synchrotron self-Compton light curve. Astrophys. J. 844, 92 (2017).

    Article  ADS  Google Scholar 

  53. Blandford, R. D. & McKee, C. F. Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130–1138 (1976).

    Article  ADS  Google Scholar 

  54. Kobayashi, S. & Sari, R. Optical flashes and radio flares in gamma-ray burst afterglow: numerical study. Astrophys. J. 542, 819–828 (2000).

    Article  ADS  Google Scholar 

  55. Panaitescu, A. & Kumar, P. Analytic light curves of gamma-ray burst afterglows: homogeneous versus wind external media. Astrophys. J. 543, 66–76 (2000).

    Article  ADS  Google Scholar 

  56. Fraija, N., Barniol Duran, R., Dichiara, S. & Beniamini, P. Synchrotron self-Compton as a likely mechanism of photons beyond the synchrotron limit in GRB 190114C. Astrophys. J. 883, 162 (2019).

    Article  ADS  Google Scholar 

  57. Rassel, M. et al. Particle in cell simulations of mildly relativistic outflows in kilonova emissions. Astrophys. J. 952, 165 (2023).

    Article  ADS  Google Scholar 

  58. Duffell, P. C. & MacFadyen, A. I. Rayleigh–Taylor instability in a relativistic fireball on a moving computational grid. Astrophys. J. 775, 87 (2013).

    Article  ADS  Google Scholar 

  59. Vanthieghem, A. et al. Physics and phenomenology of weakly magnetized, relativistic astrophysical shock waves. Galaxies 8, 33 (2020).

    Article  ADS  Google Scholar 

  60. Fraija, N. et al. Modeling the observations of GRB 180720B: from radio to sub-TeV gamma-rays. Astrophys. J. 885, 29 (2019).

    Article  ADS  Google Scholar 

  61. Mészáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. Lett. 482, L29–L32 (1997).

    Article  ADS  Google Scholar 

  62. Komissarov, S. S. & Barkov, M. V. Activation of the Blandford–Znajek mechanism in collapsing stars. Mon. Not. R. Astron. Soc. 397, 1153–1168 (2009).

    Article  ADS  Google Scholar 

  63. Jin, Z. P. & Fan, Y. Z. GRB 060418 and 060607A: the medium surrounding the progenitor and the weak reverse shock emission. Mon. Not. R. Astron. Soc. 378, 1043–1048 (2007).

    Article  ADS  Google Scholar 

  64. Gill, R. & Granot, J. Afterglow imaging and polarization of misaligned structured GRB jets and cocoons: breaking the degeneracy in GRB 170817A. Mon. Not. R. Astron. Soc. 478, 4128–4141 (2018).

    Article  ADS  Google Scholar 

  65. Tagliaferri, G. et al. An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts. Nature 436, 985–988 (2005).

    Article  ADS  Google Scholar 

  66. Zhang, B.-B., Liang, E.-W. & Zhang, B. A comprehensive analysis of Swift XRT data. I. Apparent spectral evolution of gamma-ray burst X-ray tails. Astrophys. J. 666, 1002–1011 (2007).

    Article  ADS  Google Scholar 

  67. Kumar, P. & Panaitescu, A. Afterglow emission from naked gamma-ray bursts. Astrophys. J. Lett. 541, L51–L54 (2000).

    Article  ADS  Google Scholar 

  68. Toma, K., Ioka, K., Sakamoto, T. & Nakamura, T. Low-luminosity GRB 060218: a collapsar jet from a neutron star, leaving a magnetar as a remnant? Astrophys. J. 659, 1420–1430 (2007).

    Article  ADS  Google Scholar 

  69. Ajello, M. et al. Bright gamma-ray flares observed in GRB 131108A. Astrophys. J. Lett. 886, L33 (2019).

    Article  ADS  Google Scholar 

  70. Oganesyan, G., Nava, L., Ghirlanda, G., Melandri, A. & Celotti, A. Prompt optical emission as a signature of synchrotron radiation in gamma-ray bursts. Astron. Astrophys. 628, A59 (2019).

    Article  ADS  Google Scholar 

  71. Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB080319B. Nature 455, 183–188 (2008).

    Article  ADS  Google Scholar 

  72. Lü, H.-J. et al. Extremely bright GRB 160625B with multiple emission episodes: evidence for long-term ejecta evolution. Astrophys. J. 849, 71 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and the Department of the Energy (DOE) (United States); the Institute of Research into the Fundamental Laws of the Universe within the French Alternative Energies and Atomic Energy Commission and Institut national de physique nucléaire et de physique des particules within the French National Centre for Scientific Research (France); the Italian Space Agency and Istituto Nazionale di Fisica Nucleare (Italy); the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the High Energy Accelerator Research Organization and the Japan Aerospace Exploration Agency (Japan); and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from the National Institute for Astrophysics (Italy) and the National Centre for Space Studies (France) is also gratefully acknowledged. This work was performed in part under DOE Contract DE-AC02-76SF00515 and was supported by MEXT and the Japan Society for the Promotion of Science (JSPS) (KAKENHI Grant Nos. JP17H06362 and JP23H04898), the JSPS Leading Initiative for Excellent Young Researchers programme and the CHOZEN Project of Kanazawa University (M.A.). R.G. acknowledges financial support from the UNAM-DGAPA-PAPIIT IA105823 grant (Mexico). J.G. acknowledges financial support from a joint research programme of the Natural Science Foundation of China and the Israel Science Foundation (Grant No. 3296/19).

Author information

Authors and Affiliations

Authors

Contributions

M.A. contributed to the analysis of the X-ray and gigaelectronvolt data, the interpretation and the writing of the manuscript. K.A., K. Toma, R.G. and J.G. provided the interpretation and contributed to the writing of the paper. S.R. contributed to the interpretation of the GRB model. K.K., K.N., T.N., K. Takagi, M.K., M.Y. and M.S. contributed to the optical Kanata observations and the optical data analysis. M.O., S.T., N.O. and H.G. analysed the X-ray and gigaelectronvolt data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Makoto Arimoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Nissim Fraija and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Lightcurves of the afterglow with the analytical model.

The observed flux density lightcurves at different frequencies (Fermi-LAT at 300 MeV, HESS at 300 GeV, optical at 4.6 × 1014 Hz, Swift-XRT at 2 keV, Swift-BAT at 30 keV, and radio at 15.5 GHz) are shown along with the theoretical reverse-shock (dotted), forward-shock (dashed) and combined reverse-shock plus forward-shock (solid) components. Note that the reverse-shock emission in the XRT band is suppressed because the maximum synchrotron frequency is much lower than the X-ray band. Errors correspond to the 1-σ confidence region.

Extended Data Fig. 2 Theoretical model with time-independent parameters at time intervals II and III.

(a) Spectral energy distribution at time interval II with the EATS model. The reverse- (RS) and forward-shock (FS) components are shown with the synchrotron and SSC emission. (b) Spectral energy distribution at time interval III with the EATS model. The legend shows the adopted model parameters. Here Γ0 is the bulk Lorentz factor of the coasting flow before it is decelerated by the ISM, Einj is the amount of energy injected during the shallow plateau phase, and subscripts ‘f’ and ‘r’ refer to FS and RS parameters, respectively. (c) Multi-waveband lightcurve and model comparison. The vertical line shows the duration of the prompt GRB. See the caption of Extended Data Fig. 1 for details. Errors correspond to the 1-σ confidence region.

Extended Data Fig. 3 Spectral energy distribution at time interval III.

The solid lines in the low-energy and high-energy bands represent the synchrotron and SSC components from the forward shock with the “analytical” model, respectively. The red area corresponds to the 1-σ confidence region from the best-fit power-law function for the Swift-XRT. Note that the XRT observation was not actually performed in the time interval and we used the interpolated flux before and after the interval (this interpolation is reasonable because the photon index is almost constant from T0 + 104 s to 105 s, as shown in the bottom panel of Fig. 1. The blue arrow represents the 90% upper limit in the Fermi-LAT range. The red point represents the optical flux observed by the optical telescope. The purple area represents the 1-σ confidence region from the best-fit power-law function for the HESS.

Extended Data Table 1 Model parameters used for reverse and forward shocks afterglow modeling and output parameters

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–6 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arimoto, M., Asano, K., Kawabata, K.S. et al. Gamma rays from a reverse shock with turbulent magnetic fields in GRB 180720B. Nat Astron 8, 134–144 (2024). https://doi.org/10.1038/s41550-023-02119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02119-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing