Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Changing-look active galactic nuclei

Abstract

Active galactic nuclei (AGNs) are known to show flux variability over all observable timescales and across the entire electromagnetic spectrum. Over the past decade, a growing number of sources have been observed to show dramatic flux and spectral changes, in both the X-ray and the optical/ultraviolet regimes. Such events, commonly described as ‘changing-look AGNs’, can be divided into two well-defined classes. Changing-obscuration objects show strong variability of the line-of-sight column density, mostly associated with clouds or outflows eclipsing the central engine of the AGN. Changing-state AGNs are instead objects in which the continuum emission and broad emission lines appear or disappear, and are typically triggered by strong changes in the accretion rate of the supermassive black hole. Here we review our current understanding of these two classes of changing-look AGNs, and discuss open questions and future prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectral transitions in different types of CL-AGNs.
Fig. 2: X-ray spectra and NH variations of changing-obscuration events.
Fig. 3: The cometary-shaped absorbers in NGC 1365.
Fig. 4: Light curves and spectra of CS-AGNs showing an emergent BLR.
Fig. 5: X-ray spectra and light curve of CS-AGNs.

Similar content being viewed by others

References

  1. Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).

    ADS  Google Scholar 

  2. Koss, M. et al. BAT AGN Spectroscopic Survey. I. Spectral measurements, derived quantities, and AGN demographics. Astrophys. J. 850, 74 (2017).

    ADS  Google Scholar 

  3. Ricci, C. et al. BAT AGN Spectroscopic Survey. V. X-ray properties of the Swift/BAT 70-month AGN catalog. Astrophys. J. Suppl. Ser. 233, 17 (2017).

    ADS  Google Scholar 

  4. Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).

    ADS  Google Scholar 

  5. Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803 (1995).

    ADS  Google Scholar 

  6. Ramos Almeida, C. & Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 1, 679–689 (2017).

    ADS  Google Scholar 

  7. Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).

    ADS  Google Scholar 

  8. Elitzur, M. On the unification of active galactic nuclei. Astrophys. J. Lett. 747, L33 (2012).

    ADS  Google Scholar 

  9. Lawrence, A. & Elvis, M. Obscuration and the various kinds of Seyfert galaxies. Astrophys. J. 256, 410–426 (1982).

    ADS  Google Scholar 

  10. Ricci, C. et al. The close environments of accreting massive black holes are shaped by radiative feedback. Nature 549, 488–491 (2017).

    ADS  Google Scholar 

  11. Vanden Berk, D. E. et al. The ensemble photometric variability of 25,000 quasars in the Sloan Digital Sky Survey. Astrophys. J. 601, 692–714 (2004).

    ADS  Google Scholar 

  12. Uttley, P., McHardy, I. M. & Vaughan, S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 359, 345–362 (2005).

    ADS  Google Scholar 

  13. Ulrich, M.-H., Maraschi, L. & Urry, C. M. Variability of active galactic nuclei. Annu. Rev. Astron. Astrophys. 35, 445–502 (1997).

    ADS  Google Scholar 

  14. Mereghetti, S. et al. Time domain astronomy with the THESEUS satellite. Exp. Astron. 52, 309–406 (2021).

    ADS  MathSciNet  Google Scholar 

  15. Graham, M. J. et al. Understanding extreme quasar optical variability with CRTS—II. Changing-state quasars. Mon. Not. R. Astron. Soc. 491, 4925–4948 (2020).

    ADS  Google Scholar 

  16. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    ADS  Google Scholar 

  17. Yuan, W. et al. Einstein Probe—a small mission to monitor and explore the dynamic X-ray universe. Preprint at https://arxiv.org/abs/1506.07735 (2015).

  18. Shvartzvald, Y. et al. ULTRASAT: a wide-field time-domain UV space telescope. Preprint at https://arxiv.org/abs/2304.14482 (2023).

  19. Ricci, C. et al. Compton-thick accretion in the local Universe. Astrophys. J. Lett. 815, L13 (2015).

    ADS  Google Scholar 

  20. Risaliti, G., Elvis, M. & Nicastro, F. Ubiquitous variability of X-ray-absorbing column densities in Seyfert 2 galaxies. Astrophys. J. 571, 234–246 (2002).

    ADS  Google Scholar 

  21. Barr, P., White, N. E., Sanford, P. W. & Ives, J. C. An increase in the X-ray absorption of NGC 4151. Mon. Not. R. Astron. Soc. 181, 43P–46P (1977).

    ADS  Google Scholar 

  22. Ives, J. C., Sanford, P. W. & Penston, M. V. The variability and absorption of the X-ray emission from NGC 4151. Astrophys. J. Lett. 207, L159–L162 (1976).

    ADS  Google Scholar 

  23. Warwick, R. S., Pounds, K. A. & Turner, T. J. Variable low-energy absorption in the X-ray spectrum of ESO 103-G35. Mon. Not. R. Astron. Soc. 231, 1145–1152 (1988).

    ADS  Google Scholar 

  24. Iyomoto, N., Makishima, K., Fukazawa, Y., Tashiro, M. & Ishisaki, Y. Detection of strong Fe-K lines from the spiral galaxies NGC 1365 and NGC 1386. Publ. Astron. Soc. Jpn 49, 425–434 (1997).

    ADS  Google Scholar 

  25. Risaliti, G., Maiolino, R. & Bassani, L. The hard X-ray properties of the Seyfert nucleus in NGC 1365. Astron. Astrophys. 356, 33–40 (2000).

    ADS  Google Scholar 

  26. Risaliti, G., Elvis, M., Fabbiano, G., Baldi, A. & Zezas, A. Rapid Compton-thick/Compton-thin transitions in the Seyfert 2 galaxy NGC 1365. Astrophys. J. Lett. 623, L93–L96 (2005).

    ADS  Google Scholar 

  27. Risaliti, G. et al. Occultation measurement of the size of the X-ray-emitting region in the active galactic nucleus of NGC 1365. Astrophys. J. Lett. 659, L111–L114 (2007).

    ADS  Google Scholar 

  28. Risaliti, G. et al. The XMM-Newton long look of NGC 1365: uncovering of the obscured X-ray source. Mon. Not. R. Astron. Soc. 393, L1–L5 (2009).

    ADS  Google Scholar 

  29. Malizia, A., Bassani, L., Stephen, J. B., Malaguti, G. & Palumbo, G. G. C. High-energy spectra of active galactic nuclei. II. Absorption in Seyfert galaxies. Astrophys. J. Suppl. Ser. 113, 311–331 (1997).

    ADS  Google Scholar 

  30. Elvis, M. et al. An unveiling event in the type 2 active galactic nucleus NGC 4388: a challenge for a parsec-scale absorber. Astrophys. J. Lett. 615, L25–L28 (2004).

    ADS  Google Scholar 

  31. Sanfrutos, M. et al. The size of the X-ray emitting region in SWIFT J2127.4+5654 via a broad line region cloud X-ray eclipse. Mon. Not. R. Astron. Soc. 436, 1588–1594 (2013).

    ADS  Google Scholar 

  32. Risaliti, G. et al. X-ray absorption by broad-line region clouds in Mrk 766. Mon. Not. R. Astron. Soc. 410, 1027–1035 (2011).

    ADS  Google Scholar 

  33. Ricci, C. et al. IC 751: a new changing look AGN discovered by NuSTAR. Astrophys. J. 820, 5 (2016).

    ADS  Google Scholar 

  34. Marinucci, A. et al. NuSTAR catches the unveiling nucleus of NGC 1068. Mon. Not. R. Astron. Soc. 456, L94–L98 (2016).

    ADS  Google Scholar 

  35. López-Gonzaga, N. et al. NGC 1068: no change in the mid-infrared torus structure despite X-ray variability. Astron. Astrophys. 602, A78 (2017).

    Google Scholar 

  36. Zaino, A. et al. Probing the circumnuclear absorbing medium of the buried AGN in NGC 1068 through NuSTAR observations. Mon. Not. R. Astron. Soc. 492, 3872–3884 (2020).

    ADS  Google Scholar 

  37. Chartas, G., Kochanek, C. S., Dai, X., Poindexter, S. & Garmire, G. X-ray microlensing in RXJ1131−1231 and HE1104−1805. Astrophys. J. 693, 174–185 (2009).

    ADS  Google Scholar 

  38. Yaqoob, T., Warwick, R. S. & Pounds, K. A. Variable X-ray absorption in NGC 4151. Mon. Not. R. Astron. Soc. 236, 153–170 (1989).

    ADS  Google Scholar 

  39. King, A. & Pounds, K. Powerful outflows and feedback from active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 115–154 (2015).

    ADS  Google Scholar 

  40. Kaastra, J. S. et al. A fast and long-lived outflow from the supermassive black hole in NGC 5548. Science 345, 64–68 (2014).

    ADS  Google Scholar 

  41. Mehdipour, M. et al. Chasing obscuration in type-I AGN: discovery of an eclipsing clumpy wind at the outer broad-line region of NGC 3783. Astron. Astrophys. 607, A28 (2017).

    Google Scholar 

  42. Kaastra, J. S. et al. Recurring obscuration in NGC 3783. Astron. Astrophys. 619, A112 (2018).

    Google Scholar 

  43. Beuchert, T. et al. A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift. Astron. Astrophys. 584, A82 (2015).

    Google Scholar 

  44. Kara, E. et al. AGN STORM 2. I. First results: a change in the weather of Mrk 817. Astrophys. J. 922, 151 (2021).

    ADS  Google Scholar 

  45. Matt, G., Guainazzi, M. & Maiolino, R. Changing look: from Compton-thick to Compton-thin, or the rebirth of fossil active galactic nuclei. Mon. Not. R. Astron. Soc. 342, 422–426 (2003).

    ADS  Google Scholar 

  46. Gilli, R. et al. The variability of the Seyfert galaxy NGC 2992: the case for a revived AGN. Astron. Astrophys. 355, 485–498 (2000).

    ADS  Google Scholar 

  47. Guolo, M. et al. The Eddington ratio-dependent ‘changing look’ events in NGC 2992. Mon. Not. R. Astron. Soc. 508, 144–156 (2021).

    ADS  Google Scholar 

  48. Guainazzi, M. et al. A swan song: the disappearance of the nucleus of NGC 4051 and the echo of its past glory. Mon. Not. R. Astron. Soc. 301, L1–L4 (1998).

    ADS  Google Scholar 

  49. Uttley, P., McHardy, I. M., Papadakis, I. E., Guainazzi, M. & Fruscione, A. The swan song in context: long-time-scale X-ray variability of NGC 4051. Mon. Not. R. Astron. Soc. 307, L6–L10 (1999).

    ADS  Google Scholar 

  50. Guainazzi, M., Matt, G., Fiore, F. & Perola, G. C. The Phoenix galaxy: UGC 4203 re-birth from its ashes? Astron. Astrophys. 388, 787–792 (2002).

    ADS  Google Scholar 

  51. Matt, G. et al. Suzaku observation of the Phoenix galaxy. Astron. Astrophys. 496, 653–658 (2009).

    ADS  Google Scholar 

  52. Markowitz, A. G., Krumpe, M. & Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 439, 1403–1458 (2014).

    ADS  Google Scholar 

  53. Torricelli-Ciamponi, G., Pietrini, P., Risaliti, G. & Salvati, M. Search for X-ray occultations in active galactic nuclei. Mon. Not. R. Astron. Soc. 442, 2116–2130 (2014).

    ADS  Google Scholar 

  54. Hernández-García, L., Masegosa, J., González-Martín, O. & Márquez, I. X-ray spectral variability of Seyfert 2 galaxies. Astron. Astrophys. 579, A90 (2015).

    ADS  Google Scholar 

  55. Puccetti, S. et al. Rapid NH changes in NGC 4151. Mon. Not. R. Astron. Soc. 377, 607–616 (2007).

    ADS  Google Scholar 

  56. Miniutti, G. et al. The properties of the clumpy torus and BLR in the polar-scattered Seyfert 1 galaxy ESO 323−G77 through X-ray absorption variability. Mon. Not. R. Astron. Soc. 437, 1776–1790 (2014).

    ADS  Google Scholar 

  57. Schmid, H. M., Appenzeller, I. & Burch, U. Spectropolarimetry of the borderline Seyfert 1 galaxy ESO 323−G077. Astron. Astrophys. 404, 505–511 (2003).

    ADS  Google Scholar 

  58. Laha, S. et al. The variable and non-variable X-ray absorbers in Compton-thin type II active galactic nuclei. Astrophys. J. 897, 66 (2020).

    ADS  Google Scholar 

  59. Netzer, H. The Physics and Evolution of Active Galactic Nuclei (Cambridge Univ. Press, 2013).

  60. Maiolino, R. et al. ‘Comets’ orbiting a black hole. Astron. Astrophys. 517, A47 (2010).

    Google Scholar 

  61. Shen, Y. et al. Clustering of high-redshift (z > = 2.9) quasars from the Sloan Digital Sky Survey. Astron. J. 133, 2222–2241 (2007).

    ADS  Google Scholar 

  62. Schawinski, K., Koss, M., Berney, S. & Sartori, L. F. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of 105 yr. Mon. Not. R. Astron. Soc. 451, 2517–2523 (2015).

    ADS  Google Scholar 

  63. Caplar, N., Lilly, S. J. & Trakhtenbrot, B. Optical variability of AGNs in the PTF/iPTF Survey. Astrophys. J. 834, 111 (2017).

    ADS  Google Scholar 

  64. Lawrence, A. et al. Slow-blue nuclear hypervariables in PanSTARRS-1. Mon. Not. R. Astron. Soc. 463, 296–331 (2016).

    ADS  Google Scholar 

  65. Rumbaugh, N. et al. Extreme variability quasars from the Sloan Digital Sky Survey and the Dark Energy Survey. Astrophys. J. 854, 160 (2018).

    ADS  Google Scholar 

  66. Trakhtenbrot, B. et al. A new class of flares from accreting supermassive black holes. Nat. Astron. 3, 242–250 (2019).

    ADS  Google Scholar 

  67. Shen, Y. Extreme variability and episodic lifetime of quasars. Astrophys. J. 921, 70 (2021).

    ADS  Google Scholar 

  68. Timlin, I. & John, D. et al. The frequency of extreme X-ray variability for radio-quiet quasars. Mon. Not. R. Astron. Soc. 498, 4033–4050 (2020).

    ADS  Google Scholar 

  69. Tohline, J. E. & Osterbrock, D. E. Variation of the spectrum of the Seyfert galaxy NGC 7603. Astrophys. J. Lett. 210, L117–L120 (1976).

    ADS  Google Scholar 

  70. Ward, M., Penston, M. V., Blades, J. C. & Turtle, A. J. New optical and radio observations of the X-ray galaxies NGC 7582 and NGC 2992. Mon. Not. R. Astron. Soc. 193, 563–582 (1980).

    ADS  Google Scholar 

  71. Allen, M. G., Dopita, M. A., Tsvetanov, Z. I. & Sutherland, R. S. Physical conditions in the Seyfert galaxy NGC 2992. Astrophys. J. 511, 686–708 (1999).

    ADS  Google Scholar 

  72. Penston, M. V. & Perez, E. An evolutionary link between Seyfert I and II galaxies. Mon. Not. R. Astron. Soc. 211, 33P–39 (1984).

    ADS  Google Scholar 

  73. Eracleous, M. & Halpern, J. P. NGC 3065: a certified LINER with broad, variable Balmer lines. Astrophys. J. 554, 240–244 (2001).

    ADS  Google Scholar 

  74. Cohen, R. D., Rudy, R. J., Puetter, R. C., Ake, T. B. & Foltz, C. B. Variability of Markarian 1018: Seyfert 1.9 to Seyfert 1. Astrophys. J. 311, 135 (1986).

    ADS  Google Scholar 

  75. McElroy, R. E. et al. The Close AGN Reference Survey (CARS). Mrk 1018 returns to the shadows after 30 years as a Seyfert 1. Astron. Astrophys. 593, L8 (2016).

    ADS  Google Scholar 

  76. Alloin, D., Pelat, D., Phillips, M. M., Fosbury, R. A. E. & Freeman, K. Recurrent outbursts in the broad-line region of NGC 1566. Astrophys. J. 308, 23 (1986).

    ADS  Google Scholar 

  77. Oknyansky, V. L. et al. New changing look case in NGC 1566. Mon. Not. R. Astron. Soc. 483, 558–564 (2019).

    ADS  Google Scholar 

  78. LaMassa, S. M. et al. The discovery of the first “changing look” quasar: new insights into the physics and phenomenology of active galactic nucleus. Astrophys. J. 800, 144 (2015).

    ADS  Google Scholar 

  79. Runnoe, J. C. et al. Now you see it, now you don’t: the disappearing central engine of the quasar J1011+5442. Mon. Not. R. Astron. Soc. 455, 1691–1701 (2016).

    ADS  Google Scholar 

  80. MacLeod, C. L. et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 457, 389–404 (2016).

    ADS  Google Scholar 

  81. Yang, Q. et al. Discovery of 21 new changing-look AGNs in the northern sky. Astrophys. J. 862, 109 (2018).

    ADS  Google Scholar 

  82. MacLeod, C. L. et al. Changing-look quasar candidates: first results from follow-up spectroscopy of highly optically variable quasars. Astrophys. J. 874, 8 (2019).

    ADS  Google Scholar 

  83. Green, P. J. et al. The time domain spectroscopic survey: changing-look quasar candidates from multi-epoch spectroscopy in SDSS-IV. Astrophys. J. 933, 180 (2022).

    ADS  Google Scholar 

  84. Guo, H. et al. High-redshift extreme variability quasars from Sloan Digital Sky Survey multiepoch spectroscopy. Astrophys. J. 905, 52 (2020).

    ADS  Google Scholar 

  85. Ross, N. P. et al. The first high-redshift changing-look quasars. Mon. Not. R. Astron. Soc. 498, 2339–2353 (2020).

    ADS  Google Scholar 

  86. Sun, M. et al. The Sloan Digital Sky Survey reverberation mapping project: ensemble spectroscopic variability of quasar broad emission lines. Astrophys. J. 811, 42 (2015).

    ADS  Google Scholar 

  87. Roig, B., Blanton, M. R. & Ross, N. P. Unusual broad-line Mg ii emitters among luminous galaxies in the Baryon Oscillation Spectroscopic Survey. Astrophys. J. 781, 72 (2014).

    ADS  Google Scholar 

  88. Guo, H. et al. Understanding broad Mg ii variability in quasars with photoionization: implications for reverberation mapping and changing-look quasars. Astrophys. J. 888, 58 (2020).

    ADS  Google Scholar 

  89. Yang, Q. et al. Spectral variability of a sample of extreme variability quasars and implications for the Mg ii broad-line region. Mon. Not. R. Astron. Soc. 493, 5773–5787 (2020).

    ADS  Google Scholar 

  90. Clavel, J. et al. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I. An 8 month campaign of monitoring NGC 5548 with IUE. Astrophys. J. 366, 64 (1991).

    ADS  Google Scholar 

  91. Trakhtenbrot, B. et al. 1ES 1927+654: an AGN caught changing look on a timescale of months. Astrophys. J. 883, 94 (2019).

    ADS  Google Scholar 

  92. Runco, J. N. et al. Broad Hβ emission-line variability in a sample of 102 local active galaxies. Astrophys. J. 821, 33 (2016).

    ADS  Google Scholar 

  93. Temple, M. J. et al. BASS XXXIX: Swift-BAT AGN with changing-look optical spectra. Mon. Not. R. Astron. Soc. 518, 2938–2953 (2023).

    ADS  Google Scholar 

  94. Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    ADS  Google Scholar 

  95. Gallo, L. C. et al. 1ES 1927+654: a bare Seyfert 2. Mon. Not. R. Astron. Soc. 433, 421–433 (2013).

    ADS  Google Scholar 

  96. Gezari, S. et al. iPTF discovery of the rapid “turn-on” of a luminous quasar. Astrophys. J. 835, 144 (2017).

    ADS  Google Scholar 

  97. Frederick, S. et al. A new class of changing-look LINERs. Astrophys. J. 883, 31 (2019).

    ADS  Google Scholar 

  98. Assef, R. J. et al. The WISE AGN catalog. Astrophys. J. Suppl. Ser. 234, 23 (2018).

    ADS  Google Scholar 

  99. Stern, D. et al. A mid-IR selected changing-look quasar and physical scenarios for abrupt AGN fading. Astrophys. J. 864, 27 (2018).

    ADS  Google Scholar 

  100. Ross, N. P. et al. A new physical interpretation of optical and infrared variability in quasars. Mon. Not. R. Astron. Soc. 480, 4468–4479 (2018).

    ADS  Google Scholar 

  101. Drake, A. J. et al. First results from the Catalina Real-Time Transient Survey. Astrophys. J. 696, 870–884 (2009).

    ADS  Google Scholar 

  102. Shen, Y. & Burke, C. J. A sample bias in quasar variability studies. Astrophys. J. Lett. 918, L19 (2021).

    ADS  Google Scholar 

  103. Krumpe, M. et al. The Close AGN Reference Survey (CARS). Mrk 1018 halts dimming and experiences strong short-term variability. Astron. Astrophys. 607, L9 (2017).

    ADS  Google Scholar 

  104. Parker, M. L. et al. X-ray spectra reveal the reawakening of the repeat changing-look AGN NGC 1566. Mon. Not. R. Astron. Soc. 483, L88–L92 (2019).

    ADS  Google Scholar 

  105. Noda, H. & Done, C. Explaining changing-look AGN with state transition triggered by rapid mass accretion rate drop. Mon. Not. R. Astron. Soc. 480, 3898–3906 (2018).

    ADS  Google Scholar 

  106. Ricci, C. et al. The destruction and recreation of the X-ray corona in a changing-look active galactic nucleus. Astrophys. J. Lett. 898, L1 (2020).

    ADS  Google Scholar 

  107. Ricci, C. et al. The 450 day X-ray monitoring of the changing-look AGN 1ES 1927+654. Astrophys. J. Suppl. Ser. 255, 7 (2021).

    ADS  Google Scholar 

  108. Masterson, M. et al. Evolution of a relativistic outflow and X-ray corona in the extreme changing-look AGN 1ES 1927+654. Astrophys. J. 934, 35 (2022).

    ADS  Google Scholar 

  109. Sheng, Z. et al. Mid-infrared variability of changing-look AGNs. Astrophys. J. Lett. 846, L7 (2017).

    ADS  Google Scholar 

  110. Kokubo, M. & Minezaki, T. Rapid luminosity decline and subsequent reformation of the innermost dust distribution in the changing-look AGN Mrk 590. Mon. Not. R. Astron. Soc. 491, 4615–4633 (2020).

    ADS  Google Scholar 

  111. Panessa, F. et al. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 3, 387–396 (2019).

    ADS  Google Scholar 

  112. Yang, J. et al. A compact core-jet structure in the changing-look Seyfert NGC 2617. Mon. Not. R. Astron. Soc. 503, 3886–3895 (2021).

    ADS  Google Scholar 

  113. Koay, J. Y., Vestergaard, M., Bignall, H. E., Reynolds, C. & Peterson, B. M. Parsec-scale radio morphology and variability of a changing-look AGN: the case of Mrk 590. Mon. Not. R. Astron. Soc. 460, 304–316 (2016).

    ADS  Google Scholar 

  114. Yang, J. et al. A parsec-scale faint jet in the nearby changing-look Seyfert galaxy Mrk 590. Mon. Not. R. Astron. Soc. 502, L61–L65 (2021).

    ADS  Google Scholar 

  115. Lyu, B., Yan, Z., Yu, W. & Wu, Q. Long-term and multiwavelength evolution of a changing-look AGN Mrk 1018. Mon. Not. R. Astron. Soc. 506, 4188–4198 (2021).

    ADS  Google Scholar 

  116. Laha, S. et al. A radio, optical, UV, and X-ray view of the enigmatic changing-look active galactic nucleus 1ES 1927+654 from its pre- to postflare states. Astrophys. J. 931, 5 (2022).

    ADS  Google Scholar 

  117. Zeltyn, G. et al. A transient ‘changing-look’ AGN resolved on month timescales from first-year SDSS-V data. Astrophys. J. Lett. 939, L16 (2022).

    ADS  Google Scholar 

  118. Husemann, B. et al. The Close AGN Reference Survey (CARS). What is causing Mrk 1018’s return to the shadows after 30 years? Astron. Astrophys. 593, L9 (2016).

    ADS  Google Scholar 

  119. Denney, K. D. et al. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role. Astrophys. J. 796, 134 (2014).

    ADS  Google Scholar 

  120. Jaffarian, G. W. & Gaskell, C. M. The relationship between X-ray and optical absorbers in active galactic nuclei. Mon. Not. R. Astron. Soc. 493, 930–939 (2020).

    ADS  Google Scholar 

  121. Hutsemékers, D. et al. Polarization of changing-look quasars. Astron. Astrophys. 625, A54 (2019).

    Google Scholar 

  122. Wang, S. et al. The Sloan Digital Sky Survey Reverberation Mapping Project: how broad emission line widths change when luminosity changes. Astrophys. J. 903, 51 (2020).

    ADS  Google Scholar 

  123. Goodrich, R. W. PA beta measurements and reddening in Seyfert 1.8 and 1.9 galaxies. Astrophys. J. 355, 88 (1990).

    ADS  Google Scholar 

  124. Noda, H. et al. Narrow Fe-Kα reverberation mapping unveils the deactivated broad-line region in a changing-look active galactic nucleus. Astrophys. J. 943, 63 (2023).

    ADS  Google Scholar 

  125. Emmering, R. T., Blandford, R. D. & Shlosman, I. Magnetic acceleration of broad emission-line clouds in active galactic nuclei. Astrophys. J. 385, 460 (1992).

    ADS  Google Scholar 

  126. Elitzur, M. & Shlosman, I. The AGN-obscuring torus: the end of the ‘doughnut’ paradigm? Astrophys. J. Lett. 648, L101–L104 (2006).

    ADS  Google Scholar 

  127. Lin, D. N. C. & Shields, G. A. Accretion disks and periodic outbursts of active galaxies nuclei. Astrophys. J. 305, 28 (1986).

    ADS  Google Scholar 

  128. Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214 (1991).

    ADS  Google Scholar 

  129. Ai, Y. et al. X-Ray spectral shape variation in changing-look Seyfert galaxy SDSS J155258+273728. Astrophys. J. Lett. 890, L29 (2020).

    ADS  Google Scholar 

  130. McClintock, J. E. & Remillard, R. A. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M.) Vol. 39, 157–213 (Cambridge Univ. Press, 2006).

  131. Ruan, J. J. et al. The analogous structure of accretion flows in supermassive and stellar mass black holes: new insights from faded changing-look quasars. Astrophys. J. 883, 76 (2019).

    ADS  Google Scholar 

  132. Lyu, B., Wu, Q., Yan, Z., Yu, W. & Liu, H. WISE view of changing-look active galactic nuclei: evidence for a transitional stage of AGNs. Astrophys. J. 927, 227 (2022).

    ADS  Google Scholar 

  133. Sniegowska, M., Czerny, B., Bon, E. & Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 641, A167 (2020).

    ADS  Google Scholar 

  134. Scepi, N., Begelman, M. C. & Dexter, J. Magnetic flux inversion in a peculiar changing look AGN. Mon. Not. R. Astron. Soc. 502, L50–L54 (2021).

    ADS  Google Scholar 

  135. Merloni, A. et al. A tidal disruption flare in a massive galaxy? Implications for the fuelling mechanisms of nuclear black holes. Mon. Not. R. Astron. Soc. 452, 69–87 (2015).

    ADS  Google Scholar 

  136. van Velzen, S., Holoien, T. W. S., Onori, F., Hung, T. & Arcavi, I. Optical-ultraviolet tidal disruption events. Space Sci. Rev. 216, 124 (2020).

    ADS  Google Scholar 

  137. Zhang, X.-G. Further evidence to support a tidal disruption event in the changing-look AGN SDSS J0159. Mon. Not. R. Astron. Soc. 500, L57–L61 (2021).

    ADS  Google Scholar 

  138. Kesden, M. Tidal-disruption rate of stars by spinning supermassive black holes. Phys. Rev. D. 85, 024037 (2012).

    ADS  Google Scholar 

  139. Li, R. et al. The host galaxy and rapidly evolving broad-line region in the changing-look active galactic nucleus 1ES 1927+654. Astrophys. J. 933, 70 (2022).

    ADS  Google Scholar 

  140. Karas, V. & Šubr, L. Enhanced activity of massive black holes by stellar capture assisted by a self-gravitating accretion disc. Astron. Astrophys. 470, 11–19 (2007).

    ADS  Google Scholar 

  141. McKernan, B. et al. Starfall: a heavy rain of stars in ‘turning on’ AGN. Mon. Not. R. Astron. Soc. 514, 4102–4110 (2022).

    ADS  Google Scholar 

  142. Chan, C.-H., Piran, T., Krolik, J. H. & Saban, D. Tidal disruption events in active galactic nuclei. Astrophys. J. 881, 113 (2019).

    ADS  Google Scholar 

  143. Chan, C.-H., Piran, T. & Krolik, J. H. Light curves of tidal disruption events in active galactic nuclei. Astrophys. J. 903, 17 (2020).

    ADS  Google Scholar 

  144. Wang, J.-M. & Bon, E. Changing-look active galactic nuclei: close binaries of supermassive black holes in action. Astron. Astrophys. 643, L9 (2020).

    ADS  Google Scholar 

  145. Kim, D. C., Yoon, I. & Evans, A. S. Recoiling supermassive black hole in changing-look AGN Mrk 1018. Astrophys. J. 861, 51 (2018).

    ADS  Google Scholar 

  146. Kollmeier, J. A. et al. SDSS-V: pioneering panoptic spectroscopy. Preprint at https://arxiv.org/abs/1711.03234 (2017).

  147. de Jong, R. S. et al. 4MOST: project overview and information for the first call for proposals. Messenger 175, 3–11 (2019).

    ADS  Google Scholar 

  148. Merloni, A., Nandra, K. & Predehl, P. eROSITA’s X-ray eyes on the Universe. Nat. Astron. 4, 634–636 (2020).

    ADS  Google Scholar 

  149. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  150. Boller, Th. et al. 1ES 1927+654: Persistent and rapid X-ray variability in an AGN with low intrinsic neutral X-ray absorption and narrow optical emission lines. Astron. Astrophys. 397, 557–564 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

C.R. acknowledges support from the Fondecyt Regular (grant 1230345) and ANID BASAL (project FB210003). B.T. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement 950533) and from the Israel Science Foundation, (grant 1849/19). We thank G. Zeltyn for his help with Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

C.R. and B.T. devised, together, the concept and structure of the Review.

Corresponding author

Correspondence to Claudio Ricci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, C., Trakhtenbrot, B. Changing-look active galactic nuclei. Nat Astron 7, 1282–1294 (2023). https://doi.org/10.1038/s41550-023-02108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02108-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing