Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the Mars O2 visible nightglow by the NOMAD spectrometer onboard the Trace Gas Orbiter

Abstract

On Mars, atomic oxygen controls the carbon dioxide radiative cooling of the upper atmosphere and the presence of an ozone layer near the poles. To remotely probe meridional transport of O atoms from the summer to the winter hemisphere and the descending flow in the winter polar regions, the O2 Herzberg II atmospheric emission could be used as a proxy. This emission is quite weak on Earth’s nightside, but it is prominent in the Venus night airglow, and it has not previously been observed on Mars. Here we report the limb detection of the O2 Herzberg II visible bands in the Mars nightglow with the NOMAD ultraviolet–visible spectrometer onboard the European Space Agency’s Trace Gas Orbiter. The emission layer reaches up to hundreds of kilorayleighs in the limb viewing geometry. It is mainly located between 40 km and 60 km at high latitudes during the winter season, consistent with three-body recombination of oxygen atoms. This O2 nightglow should be observable from a Martian orbiter as well as from the Martian surface with the naked eye under clear sky conditions. These observations pave the way to future global observations of the Martian atmospheric circulation with simpler lower-cost instrumentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Average high-latitude nightglow spectrum.
Fig. 2: Distribution of detections of the O2 Herzberg II nightglow.
Fig. 3: Altitude distribution of the nightside limb observations.
Fig. 4: Model simulations of the limb brightness distribution of the O2 Herzberg II bands.

Similar content being viewed by others

Data availability

The NOMAD-UVIS spectra can be downloaded from ESA’s SA archives at https://archives.esac.esa.int/psa/#!Table%20View/NOMAD=instrument (select UVIS from the list of instruments and ‘Level 3 Calibrated’ from the processing level). Observed limb intensities and model calculations supporting Fig. 4 are available from BIRA-IASB repository at https://doi.org/10.18758/71021084 or from the corresponding author upon reasonable request.

References

  1. Barth, C. A. et al. Mariner 6 and 7 ultraviolet spectrometer experiment: upper atmosphere data. J. Geophys. Res. 76, 2213–2227 (1971).

    Article  ADS  Google Scholar 

  2. Gérard, J. C. et al. Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nat. Astron. 4, 1049–1052 (2020).

    Article  ADS  Google Scholar 

  3. Gérard, J. C. et al. First observation of the oxygen 630 nm emission in the Martian dayglow. Geophys. Res. Lett. 48, e2020GL092334 (2021).

    Article  ADS  Google Scholar 

  4. Aoki, S. et al. Density and temperature of the upper mesosphere and lower thermosphere of Mars retrieved from the O i 557.7 nm dayglow measured by TGO/NOMAD. J. Geophys. Res. 127, e2022JE007206 (2022).

    Article  ADS  Google Scholar 

  5. Soret, L. et al. The Mars oxygen visible dayglow: a Martian year of NOMAD/UVIS observations. J. Geophys. Res. 127, e2022JE007220 (2022).

    Article  ADS  Google Scholar 

  6. Schneider, N. M. et al. Imaging of Martian circulation patterns and atmospheric tides through MAVEN/IUVS nightglow observations. J. Geophys. Res. 125, e2019JA027318 (2020).

    Article  ADS  Google Scholar 

  7. Bertaux, J. L., Gondet, B., Lefèvre, F., Bibring, J. P. & Montmessin, F. First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions. J. Geophys. Res. 117, E00J04 (2012).

    Article  ADS  Google Scholar 

  8. Fedorova, A. et al. The O2 nightglow in the martian atmosphere by SPICAM onboard of Mars-Express. Icarus 219, 596–608 (2012).

    Article  ADS  Google Scholar 

  9. Clancy, R. T. et al. Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. J. Geophys. Res. 117, E00J10 (2012).

    Article  Google Scholar 

  10. Clancy, R. T. et al. First detection of Mars atmospheric hydroxyl: CRISM near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus 226, 272–281 (2013).

    Article  ADS  Google Scholar 

  11. Patel, M. R. et al. NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Appl. Opt. 56, 2771–2782 (2017).

    Article  ADS  Google Scholar 

  12. Vandaele, A. C. et al. An integrated suite of three spectrometers for the ExoMars trace gas mission: technical description, science objectives and expected performance. Space Sci. Rev. 214, 1–47 (2018).

    Article  Google Scholar 

  13. López-Valverde et al. Investigations of the Mars upper atmosphere with ExoMars Trace Gas Orbiter. Space Sci. Rev. 214, 29 (2018).

    Article  ADS  Google Scholar 

  14. Krupenie, P. H. The spectrum of molecular oxygen. J. Phys. Chem. Ref. Data 1, 423–534 (1972).

    Article  ADS  Google Scholar 

  15. Krasnopolsky, V. A. in Venus (eds Hunten D. M. et al.) 459–483 (Univ. Arizona Press, 1983).

  16. Lawrence, G. M., Barth, C. A. & Argabright, V. Excitation of the Venus night airglow. Science 195, 573–574 (1977).

    Article  ADS  Google Scholar 

  17. Slanger, T. G. & Copeland, R. A. Energetic oxygen in the upper atmosphere and the laboratory. Chem. Rev. 103, 4731–4766 (2003).

    Article  Google Scholar 

  18. Bougher, S. W. & Borucki, W. J. Venus O2 visible and IR nightglow: implications for lower thermosphere dynamics and chemistry. J. Geophys. Res. 99, 3759–3776 (1994).

    Article  ADS  Google Scholar 

  19. Krasnopolsky, V. A. Excitation of the oxygen nightglow on the terrestrial planets. Planet. Space Sci. 59, 754–766 (2011).

    Article  ADS  Google Scholar 

  20. Bougher, S. W., Hunten, D. M. & Roble, R. G. CO2 cooling in terrestrial planet thermospheres. J. Geophys. Res. 99, 14609–14622 (1994).

    Article  ADS  Google Scholar 

  21. Montmessin, F. & Lefèvre, F. Transport-driven formation of a polar ozone layer on Mars. Nat. Geosci. 6, 930–933 (2013).

    Article  ADS  Google Scholar 

  22. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24175 (1999).

    Article  ADS  Google Scholar 

  23. Omholt, A. The Optical Aurora (Springer, 1971); https://doi.org/10.1007/978-3-642-46269-6

  24. Lilensten, J. Prediction of blue, red and green aurorae at Mars. Planet. Space Sci. 115, 48–56 (2015).

    Article  ADS  Google Scholar 

  25. Willame, Y. et al. Calibration of the NOMAD-UVIS data. Planet. Space Sci. 218, 105504 (2022).

    Article  Google Scholar 

  26. García Muñoz, A., Mills, F. P., Slanger, T. G., Piccioni, G. & Drossart, P. Visible and near‐infrared nightglow of molecular oxygen in the atmosphere of Venus. J. Geophys. Res. 114, E12002 (2009).

    Article  ADS  Google Scholar 

  27. García Muñoz, A. et al. Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera. Geophys. Res. Lett. 40, 2539–2543 (2013).

    Article  ADS  Google Scholar 

  28. Gérard, J. C., Soret, L., Migliorini, A. & Piccioni, G. Oxygen nightglow emissions of Venus: vertical distribution and collisional quenching. Icarus 223, 602–608 (2013).

    Article  ADS  Google Scholar 

  29. Migliorini, A. et al. The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus 223, 609–614 (2013).

    Article  ADS  Google Scholar 

  30. Smith, G. P. & Robertson, R. Temperature dependence of oxygen atom recombination in nitrogen after ozone photolysis. Chem. Phys. Lett. 458, 6–10 (2008).

    Article  ADS  Google Scholar 

  31. Nair, H., Allen, M., Anbar, A. D., Yung, Y. L. & Clancy, R. T. A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994).

    Article  ADS  Google Scholar 

  32. Millour, E. et al. The Mars Climate Database (Version 6.1). EPSC Abstr. 16, EPSC2022-786 (2022).

Download references

Acknowledgements

B.H. is research associate of the Belgian Fund for Scientific Research (FNRS). ExoMars is a space mission of ESA and Roscosmos. The NOMAD experiment is led by the IASB-BIRA, assisted by co-principal-investigator teams from Spain (IAA-CSIC), Italy (INAF-IAPS) and the United Kingdom (The Open University). This project acknowledges funding from BELSPO, with the financial and contractual coordination by the ESA Prodex Office (PEA grant numbers 4000140863, 4000121493 and 4000129683). M.A.L.-V. was supported by grant number PGC2018-101836-B-100 (MCIU/AEI/FEDER, EU) and CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033. We also acknowledge support from the UK Space Agency through grant numbers ST/V002295/1, ST/V005332/1, ST/Y000234/1 and ST/X006549/1’. We thank the ESA TGO team and its project scientists H. Svedhem and C. Wilson for supporting these observations.

Author information

Authors and Affiliations

Authors

Contributions

J.-C.G. and L.S. conceived the study and wrote the paper. Y.W., C.D., I.R.T. and J.P.M. calibrated the UVIS data and prepared the datasets. Observation planning was managed by J.-C.G., L.S., B.R., and M.R.P. A.C.V. is the NOMAD principal investigator, M.R.P. is NOMAD co-principal investigator. All authors contributed to discussion and comments on the paper.

Corresponding author

Correspondence to J.-C. Gérard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Antonio García Muñoz and Guillaume Gronoff for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, JC., Soret, L., Thomas, I.R. et al. Observation of the Mars O2 visible nightglow by the NOMAD spectrometer onboard the Trace Gas Orbiter. Nat Astron 8, 77–81 (2024). https://doi.org/10.1038/s41550-023-02104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02104-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing