Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Venus’s atmospheric nitrogen explained by ancient plate tectonics

Abstract

Venus is the least understood of the terrestrial planets. Despite broad similarities to the Earth in mass and size, Venus has no evidence of plate tectonics recorded on its young surface, and Venus’s atmosphere is strikingly different. Numerical experiments of long-term planetary evolution have sought to understand Venus’s thermal–tectonic history with indeterminate results. However, Venus’s atmosphere is linked to interior evolution and can be used as a diagnostic to constrain planetary evolution. Here we compare the present-day Venusian atmosphere to atmospheres generated by long-term thermal–chemical–tectonic evolution models. We find that a continuous single-plate stagnant lid regime operating since antiquity (magma ocean solidification) explains neither the present-day observed atmospheric abundances of N2 and CO2, nor the surface pressure. Instead, the Venusian atmosphere requires volcanic outgassing in an early phase of plate-tectonic-like activity. Our findings indicate that Venus’s atmosphere results from a great climatic–tectonic transition, from an early phase of active lid tectonics that lasted for at least 1 Gyr, followed by the current stagnant lid-like mode of reduced outgassing rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelled cumulative atmospheric mass of outgassed N2 and CO2 over time for an active and stagnant lid Venus.
Fig. 2: Surface pressures (Ps) and cumulative extrusive melt produced as a function of time for active and stagnant lid tectonic states.
Fig. 3: Atmospheric observables compared to simulation of active and stagnant lid tectonic states.
Fig. 4: Outgassed N2 and CO2 abundances as driven by tectonic regime change at 100 Myr and 1 Gyr.

Similar content being viewed by others

Data availability

Data used to generate Figs. 14 are available at https://doi.org/10.5281/zenodo.7570178.

Code availability

MATLAB is a commercial code. The C parametrized thermal evolution code used here and described in the Methods sections, in addition to the MATLAB analysis code(s), are available from the authors upon reasonable request.

References

  1. Bullock, M. A. & Grinspoon, D. H. The recent evolution of climate on Venus. Icarus 150, 19–37 (2001).

    Article  ADS  Google Scholar 

  2. Schaber, G. G. et al. Geology and distribution of impact craters on Venus: what are they telling us? J. Geophys. Res. 97, 13257–13301 (1992).

    Article  ADS  Google Scholar 

  3. Strom, R. G., Schaber, G. G. & Dawson, D. D. The global resurfacing of Venus. J. Geophys. Res. Planets 99, 10899–10926 (1994).

    Article  ADS  Google Scholar 

  4. Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016).

    Article  ADS  Google Scholar 

  5. Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: Implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).

    Article  ADS  Google Scholar 

  6. Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265 (2020).

    Article  ADS  Google Scholar 

  7. Gillmann, C. & Tackley, P. Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res. Planets 119, 1189–1217 (2014).

    Article  ADS  Google Scholar 

  8. Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. 125, e2019JE006276 (2020).

    Article  ADS  Google Scholar 

  9. Solomon, S. C. et al. Venus tectonics - An overview of Magellan observations. J. Geophys. Res. Planets 97, 13199–13255 (1992).

    Article  ADS  Google Scholar 

  10. Phillips, R. J., Bullock, M. A. & Hauck, S. A. Climate and interior coupled evolution on Venus. Geophys. Res. Lett. 28, 1779–1782 (2001).

    Article  ADS  Google Scholar 

  11. McGill, G. E. Venus tectonics: another Earth or another Mars? Geophys. Res. Lett. 6, 739–741 (1979).

    Article  ADS  Google Scholar 

  12. Kaula, W. M. & Phillips, R. J. Quantitative tests for plate tectonics on Venus. Geophys. Res. Lett. 8, 1187–1190 (1981).

    Article  ADS  Google Scholar 

  13. Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, 2001).

  14. Cann, J. R. et al. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. A. 355, 283–318 (1997).

    Article  Google Scholar 

  15. Nimmo, F. & Stevenson, D. J. Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. Planets 105, 11969–11979 (2000).

    Article  ADS  Google Scholar 

  16. Guimond, C. M., Noack, L., Ortenzi, G. & Sohl, F. Low volcanic outgassing rates for a stagnant lid archean Earth with graphite-saturated magmas. Phys. Earth Planet. Inter. 320, 106788 (2021).

    Article  Google Scholar 

  17. Noack, L., Rivoldini, A. & Van Hoolst, T. Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone. Phys. Earth Planet. Inter. 269, 40–57 (2017).

    Article  ADS  Google Scholar 

  18. Som, S. M. et al. Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci. 9, 448–451 (2016).

    Article  ADS  Google Scholar 

  19. Stüeken, E. E. et al. Mission to planet Earth: the first two billion years. Space Sci. Rev. 216, 31 (2020).

    Article  ADS  Google Scholar 

  20. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    Article  ADS  Google Scholar 

  21. Boujibar, A., Driscoll, P. & Fei, Y. Super-earth internal structures and initial thermal states. J. Geophys. Res. 125, e2019JE006124 (2020).

    Article  ADS  Google Scholar 

  22. Taylor, F. & Grinspoon, D. Climate evolution of Venus. J. Geophys. Res. https://doi.org/10.1029/2008JE003316 (2009).

  23. Breuer, D. & Moore, W. B. in Treatise on Geophysics (ed. Gerald Schubert) 299–348 (Elsevier, 2007).

  24. Warren, A. O. & Kite, E. S. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl Acad. Sci. 120, e2209751120 (2023).

    Article  Google Scholar 

  25. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of the Earth’s surface temperature. J. Geophys. Res. 86, 9776 (1981).

    Article  ADS  Google Scholar 

  26. Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218, 70 (2022).

    Article  ADS  Google Scholar 

  27. Solomatov, V. S. & Moresi, L. N. Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996).

    Article  ADS  Google Scholar 

  28. Bjonnes, E., Johnson, B. C. & Evans, A. J. Estimating Venusian thermal conditions using multiring basin morphology. Nat. Astron 5, 498–502 (2021).

    Article  ADS  Google Scholar 

  29. Zolotov, M. Y. Gas–solid interactions on venus and other solar system bodies. Rev. Mineral. Geochem. 84, 351–392 (2018).

    Article  Google Scholar 

  30. Taylor, F. W., Svedhem, H. & Head, J. W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet. Space Sci. Rev. https://doi.org/10.1007/s11214-018-0467-8 (2018).

  31. Johnstone, C. P., Lammer, H., Kislyakova, K. G., Scherf, M. & Güdel, M. The young sun’s XUV-activity as a constraint for lower CO2-limits in the Earth’s archean atmosphere. Earth Planet. Sci. Lett. 576, 117197 (2021).

    Article  Google Scholar 

  32. Weller, M. B., Lenardic, A. & O’Neill, C. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015).

    Article  ADS  Google Scholar 

  33. Weller, M. B. & Lenardic, A. On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. Geosci. Front 9, 91–102 (2018).

    Article  Google Scholar 

  34. O’Neill, C. et al. A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016).

    Article  ADS  Google Scholar 

  35. Lécuyer, C., Simon, L. & Guyot, F. Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Planet. Sci. Lett. 181, 33 (2000).

    Article  ADS  Google Scholar 

  36. Namiki, N. & Solomon, S. C. Volcanic degassing of argon and helium and the history of crustal production on Venus. J. Geophys. Res. 103, 3655 (1998).

    Article  ADS  Google Scholar 

  37. Kaula, W. M. Constraints on Venus evolution from radiogenic argon. Icarus 139, 32 (1999).

    Article  ADS  Google Scholar 

  38. Hoffman, J. H., Hodges, R. R., Donahue, T. M. & McElroy, M. B. Composition of the Venus lower atmosphere from the Pioneer Venus Mass Spectrometer. J. Geophys. Res. Space Phys. 85, 7882–7890 (1980).

    Article  ADS  Google Scholar 

  39. Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

    Article  ADS  Google Scholar 

  40. Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).

    Article  Google Scholar 

  41. Bierson, C. J. & Zhang, X. Chemical cycling in the Venusian atmosphere: a full photochemical model from the surface to 110 km. J. Geophys. Res. 125, e2019JE006159 (2020).

    Article  ADS  Google Scholar 

  42. Lenardic, A., Jellinek, A. M. & Moresi, L. N. A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271, 34–42 (2008).

    Article  ADS  Google Scholar 

  43. Foley, B. J., Bercovici, D. & Landuyt, W. The conditions for plate tectonics on super-Earths: inferences from convection models with damage. Earth Planet. Sci. Lett. 331–332, 281–290 (2012).

    Article  ADS  Google Scholar 

  44. Byrne, P. K. et al. A globally fragmented and mobile lithosphere on Venus. Proc. Natl Acad. Sci. 118, e2025919118 (2021).

    Article  Google Scholar 

  45. Filiberto, J., Trang, D., Treiman, A. H. & Gilmore, M. S. Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci. Adv. 6, eaax7445 (2020).

    Article  ADS  Google Scholar 

  46. Tian, F., Kasting, J. F., Liu, H.-L. & Roble, R. G. Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. https://doi.org/10.1029/2007JE002946 (2008).

  47. Grasset, O. & Parmentier, E. M. Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution. J. Geophys. Res. Solid Earth 103, 18171–18181 (1998).

    Article  Google Scholar 

  48. Sandu, C. & Kiefer, W. S. Degassing history of Mars and the lifespan of its magnetic dynamo. Geophys. Res. Lett. 39, L03201 (2012).

    Article  ADS  Google Scholar 

  49. Sandu, C., Lenardic, A. & McGovern, P. The effects of deep water cycling on planetary thermal evolution. J. Geophys. Res. Solid Earth 116, B12404 (2011).

    Article  ADS  Google Scholar 

  50. Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).

    Article  ADS  Google Scholar 

  51. Morschhauser, A., Grott, M. & Breuer, D. Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212, 541–558 (2011).

    Article  ADS  Google Scholar 

  52. Weller, M. B., Lenardic, A. & Moore, W. B. Scaling relationships and physics for mixed heating convection in planetary interiors: isoviscous spherical shells. J. Geophys. Res. Solid Earth 121, 7598–7617 (2016).

    Article  ADS  Google Scholar 

  53. Schubert, G. Subsolidus convection in the mantles of terrestrial planets. Annu. Rev. Earth Planet. Sci. 7, 289–342 (1979).

    Article  ADS  Google Scholar 

  54. Schubert, G., Stevenson, D. & Cassen, P. Whole planet cooling and the radiogenic heat source contents of the Earth and moon. J. Geophys. Res. Solid Earth 85, 2531–2538 (1980).

    Article  Google Scholar 

  55. Stevenson, D. J., Spohn, T. & Schubert, G. Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983).

    Article  ADS  Google Scholar 

  56. Hirth, G. & Kohlstedt, D. in Inside the Subduction Factory, Vol. 138 (ed. Eiler, J.) 83–105 (AGU Geophysical Monograph, 2003).

  57. Liebske, C. et al. Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities. Earth Planet. Sci. Lett. 240, 589–604 (2005).

    Article  ADS  Google Scholar 

  58. Karato, S. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  ADS  Google Scholar 

  59. Li, Z.-X. A., Lee, C.-T. A., Peslier, A. H., Lenardic, A. & Mackwell, S. J. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J. Geophys. Res. Solid Earth 113 https://doi.org/10.1029/2007JB005540 (2008).

  60. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    Article  ADS  Google Scholar 

  61. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  Google Scholar 

  62. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochemistry, Geophys. Geosystems 4, 1073 (2003).

    Article  ADS  Google Scholar 

  63. Hirschmann, M. M. The mantle solidus: experimental constraints and the effect of peridotite composition. Geochemistry Geophys. Geosystems https://doi.org/10.1029/2000GC000070 (2000).

  64. Maaløe, S. The solidus of harzburgite to 3 GPa pressure: the compositions of primary abyssal tholeiite. Mineral. Petrol. 81, 1–17 (2004).

    Article  ADS  Google Scholar 

  65. Ohtani, E., Nagata, Y., Suzuki, A. & Kato, T. Melting relations of peridotite and the density crossover in planetary mantles. Chem. Geol. 120, 207–221 (1995).

    Article  ADS  Google Scholar 

  66. Ohtani, E., Suzuki, A. & Kato, T. in Properties of Earth and Planetary Materials at High Pressure and Temperature (eds Manghnani, M. H. & Yagi, T.) 227–239 (American Geophysical Union, 1998).

  67. Hauck, S. A. & Phillips, R. J. Thermal and crustal evolution of Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2001je001801 (2002).

  68. Grott, M., Breuer, D. & Laneuville, M. Thermo-chemical evolution and global contraction of Mercury. Earth Planet. Sci. Lett. 307, 135–146 (2011).

    Article  ADS  Google Scholar 

  69. O’Neill, C., Lenardic, A., Jellinek, A. M. & Kiefer, W. S. Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. J. Geophys. Res. https://doi.org/10.1029/2006JE002799 (2007).

  70. Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014).

    Article  ADS  Google Scholar 

  71. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  Google Scholar 

  72. Herd, C. D. K. Basalts as probes of planetary interior redox state. Rev. Mineral. Geochem. 68, 527–553 (2008).

    Article  Google Scholar 

  73. Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993).

    Article  ADS  Google Scholar 

  74. Marty, B. & Yokochi, R. Water in the early Earth. Rev. Mineral. Geochem. 62, 421–450 (2006).

    Article  Google Scholar 

  75. Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017).

    Article  ADS  Google Scholar 

  76. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  ADS  Google Scholar 

  77. Grewal, D. S., Dasgupta, R., Hough, T. & Farnell, A. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. Nat. Geosci. 14, 369–376 (2021).

    Article  ADS  Google Scholar 

  78. Baines, K. H. et al. in Comparative Climatology of Terrestrial Planets (eds Bullock, M. A., Mackwell, S. J., Simon-Miller, A. A. & Harder, J. W.) 137–160 (Univ. of Arizona Press, 2013).

Download references

Acknowledgements

This work was supported by funds provided by A.J.E., Brown University and NASA’s Solar System Workings programme (grant number 80NSSC23K0167), which partially funded M.B.W. Additional support was provided through the USRA/LPI Urey fellowship for M.B.W.

Author information

Authors and Affiliations

Authors

Contributions

M.B.W., A.J.E. and A.V.J. conceptualized the project. A.J.E., M.B.W. and D.E.I. devised the methodology and M.B.W. and A.J.E. performed the investigation. Visualization was done by M.B.W. Funding acquisition was handled by M.B.W. and A.J.E. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Matthew B. Weller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Helmut Lammer, Cedric Gillmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–6, Table 1 and Figs. 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, M.B., Evans, A.J., Ibarra, D.E. et al. Venus’s atmospheric nitrogen explained by ancient plate tectonics. Nat Astron 7, 1436–1444 (2023). https://doi.org/10.1038/s41550-023-02102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02102-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing