Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Space weathering record and pristine state of Ryugu samples from MicrOmega spectral analysis

Abstract

The samples returned from asteroid Ryugu were collected both at its surface and at its subsurface by Hayabusa2 and can, thus, provide information on the space weathering of C-type asteroids at different depths without terrestrial contamination. The near-infrared hyperspectral microscope MicrOmega gathered data on the –OH feature at ~2.7 μm for 177 individual grains from the two collection sites. Here, through a spectral analysis of these data, we show that the position of the band peak can be used as an indicator of the degree of space weathering. Most subsurficial grains do not present space weathering features, indicating that Ryugu’s subsurface layers have never been exposed to the interplanetary medium. Moreover, the ~2.7 μm feature for the Ryugu samples is narrower than that observed for CI chondrites, which are the closest meteorite analogues to Ryugu, suggesting that these contain more absorbed molecular water than Ryugu due to terrestrial aqueous contamination. We conclude that Ryugu samples should be considered as a reference for the primordial water abundance within primitive bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of variations in peak position.
Fig. 2: Distribution of spectral parameters.
Fig. 3: Example of variations in band depth.
Fig. 4: Dispersion diagram between band depth and peak position.
Fig. 5: Variations of spectral parameters induced by space weathering.

Similar content being viewed by others

Data availability

The average spectrum of each grain assessed in this study is available from the Ryugu Sample Database System (JAXA) at https://darts.isas.jaxa.jp/curation/hayabusa2/. Source data are provided with this paper.

References

  1. Tachibana, S. et al. Hayabusa2: scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3. Geochem. J. 48, 571–587 (2014).

    Article  ADS  Google Scholar 

  2. Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top–shaped rubble pile. Science 364, 268–272 (2019).

    Article  ADS  Google Scholar 

  3. Kitazato, K. et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science 364, 272–275 (2019).

    Article  ADS  Google Scholar 

  4. Lebofsky, L. A. Asteroid 1 Ceres: evidence for water of hydration. Mon. Not. R. Astron. Soc. 182, 17P–21P (1978).

    Article  ADS  Google Scholar 

  5. Rivkin, A. S. et al. Hydrogen concentrations on C-class asteroids derived from remote sensing. Meteorit. Planet. Sci. 38, 1383–1398 (2003).

    Article  ADS  Google Scholar 

  6. Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron 3, 332–340 (2019).

    Article  ADS  Google Scholar 

  7. Arakawa, M. et al. Scientific objectives of small carry-on impactor (SCI) and deployable camera 3 digital (DCAM3-D): observation of an ejecta curtain and a crater formed on the surface of Ryugu by an artificial high-velocity impact. Space Sci. Rev. 208, 187–212 (2017).

    Article  ADS  Google Scholar 

  8. Yada, T. et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nat. Astron. 6, 214–220 (2022).

    Article  ADS  Google Scholar 

  9. Pilorget, C. et al. First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope. Nat. Astron. 6, 221–225 (2022).

    Article  ADS  Google Scholar 

  10. Nakamura, E. et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proc. Jpn Acad. Ser. B 98, 227–282 (2022).

    Article  ADS  Google Scholar 

  11. Yokoyama, T. et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science https://doi.org/10.1126/science.abn7850 (2022).

    Article  Google Scholar 

  12. Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples. Science https://doi.org/10.1126/science.abn86 (2022).

    Article  Google Scholar 

  13. Farmer, V. C. in The Infrared Spectra of Minerals (ed. Farmer, V. C.) Ch. 15 (Mineralogical Society, 1974).

  14. Potin, S., Manigand, S., Beck, P., Wolters, C. & Schmitt, B. A model of the 3-μm hydration band with exponentially modified Gaussian (EMG) profiles: application to hydrated chondrites and asteroids. Icarus 343, 113686 (2020).

    Article  Google Scholar 

  15. Bates, H. C., King, A. J., Donaldson Hanna, K. L., Bowles, N. E. & Russell, S. S. Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return. Meteorit. Planet. Sci. 55, 77–101 (2020).

    Article  ADS  Google Scholar 

  16. Beck, P. et al. Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids. Geochim. Cosmochim. Acta 74, 4881–4892 (2010).

    Article  ADS  Google Scholar 

  17. Takir, D. et al. Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteorit. Planet. Sci.https://doi.org/10.1111/maps.12171 (2013).

    Article  Google Scholar 

  18. Bishop, J. L., Lane, M. D., Dyar, M. D. & Brown, A. J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 43, 35–54 (2008).

    Article  ADS  Google Scholar 

  19. Tomeoka, K. & Buseck, P. R. Matrix mineralogy of the Orgueil CI carbonaceous chondrite. Geochim. Cosmochim. Acta 52, 1627–1640 (1988).

    Article  ADS  Google Scholar 

  20. Zolensky, M., Barrett, R. & Browning, L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3123–3148 (1993).

    Article  ADS  Google Scholar 

  21. King, A. J., Schofield, P. F., Howard, K. T. & Russell, S. S. Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim. Cosmochim. Acta 165, 148–160 (2015).

    Article  ADS  Google Scholar 

  22. King, A. J., Schofield, P. F. & Russell, S. S. Type 1 aqueous alteration in CM carbonaceous chondrites: implications for the evolution of water-rich asteroids. Meteorit. Planet. Sci. 52, 1197–1215 (2017).

    Article  ADS  Google Scholar 

  23. Brunetto, R., Loeffler, M. J., Nesvorný, D., Sasaki, S. & Strazzulla, G. in Asteroids IV (eds Michel, P. et al.) 597–616 (Univ. Arizona Press, 2015).

  24. Chapman, C. R. Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004).

    Article  ADS  Google Scholar 

  25. Lantz, C. et al. Ion irradiation of carbonaceous chondrites: a new view of space weathering on primitive asteroids. Icarus 285, 43–57 (2017).

    Article  ADS  Google Scholar 

  26. Brunetto, R. et al. Hyperspectral FTIR imaging of irradiated carbonaceous meteorites. Planet. Space Sci. 158, 38–45 (2018).

    Article  ADS  Google Scholar 

  27. Thompson, M. S., Loeffler, M. J., Morris, R. V., Keller, L. P. & Christoffersen, R. Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319, 499–511 (2019).

    Article  ADS  Google Scholar 

  28. Rubino, S. et al. Space weathering affects the remote near-IR identification of phyllosilicates. Planet. Sci. J. 1, 61 (2020).

    Article  Google Scholar 

  29. Matsuoka, M. et al. Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids. Icarus 254, 135–143 (2015).

    Article  ADS  Google Scholar 

  30. Laczniak, D. L. et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses. Icarus 364, 114479 (2021).

    Article  Google Scholar 

  31. Noguchi, T. et al. A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu. Nat. Astron. https://doi.org/10.1038/s41550-022-01841-6 (2022).

    Article  Google Scholar 

  32. Nakato, A. et al. Variations of the surface characteristics of Ryugu returned samples. Earth Planets Space. 75, 45 (2023).

    Article  ADS  Google Scholar 

  33. Morota, T. et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: implications for surface evolution. Science 368, 654–659 (2020).

    Article  ADS  Google Scholar 

  34. Jaumann, R. et al. Images from the surface of asteroid Ryugu show rocks similar to carbonaceous chondrite meteorites. Science 365, 817–820 (2019).

    Article  ADS  Google Scholar 

  35. Okada, T. et al. Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature 579, 518–522 (2020).

    Article  ADS  Google Scholar 

  36. Kitazato, K. et al. Thermally altered subsurface material of asteroid (162173) Ryugu. Nat. Astron. 5, 246–250 (2021).

    Article  ADS  Google Scholar 

  37. Galiano, A. et al. NIRS3 spectral analysis of the artificial Omusubi-Kororin crater on Ryugu. Mon. Not. R. Astron. Soc. 514, 6173–6182 (2022).

    Article  ADS  Google Scholar 

  38. Riu, L. et al. Spectral characterization of the craters of Ryugu as observed by the NIRS3 instrument on-board Hayabusa2. Icarus 357, 114253 (2021).

    Article  Google Scholar 

  39. Takir, D., Stockstill-Cahill, K. R., Hibbitts, C. A. & Nakauchi, Y. 3-μm reflectance spectroscopy of carbonaceous chondrites under asteroid-like conditions. Icarus 333, 243–251 (2019).

    Article  ADS  Google Scholar 

  40. Bibring, J.-P., Hamm, V., Pilorget, C. & Vago, J. L., the MicrOmega Team. The MicrOmega investigation onboard ExoMars. Astrobiology 17, 621–626 (2017).

    Article  ADS  Google Scholar 

  41. Riu, L. et al. Calibration and performances of the MicrOmega instrument for the characterization of asteroid Ryugu returned samples. Rev. Sci. Instrum. 93, 054503 (2022).

    Article  ADS  Google Scholar 

  42. Loizeau, D. et al. Constraints on Solar System early evolution by MicrOmega analysis of Ryugu carbonates. Nat. Astron. https://doi.org/10.1038/s41550-022-01870-1 (2023).

    Article  Google Scholar 

  43. Clark, R. N. & Roush, T. L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 6329–6340 (1984).

    Article  ADS  Google Scholar 

  44. Milliken, R. E. & Mustard, J. F. Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. J. Geophys. Res. 110, E12001 (2005).

    Article  ADS  Google Scholar 

  45. Milliken, R. E. & Mustard, J. F. Estimating the water content of hydrated minerals using reflectance spectroscopy: I. Effects of darkening agents and low-albedo materials. Icarus 189, 550–573 (2007).

    Article  ADS  Google Scholar 

  46. Garenne, A. et al. Bidirectional reflectance spectroscopy of carbonaceous chondrites: implications for water quantification and primary composition. Icarus 264, 172–183 (2016).

    Article  ADS  Google Scholar 

  47. Praet, A. et al. Hydrogen abundance estimation model and application to (162173) Ryugu. Astron. Astrophys. 649, L16 (2021).

    Article  ADS  Google Scholar 

  48. Press, W. H. & Teukolsky, S. A. Kolmogorov–Smirnov test for two-dimensional data. Comput. Phys. 2, 74 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the whole Hayabusa2 team for their scientific and technical contributions to this successful mission. We thank the National Centre for Space Studies, which is the French space agency, for its support. T.Y. received support from the Japan Society for the Promotion of Science, grant number JP18K03830. We warmly thank P. Beck and D. Takir for providing us with near-infrared spectra of carbonaceous chondrites.

Author information

Authors and Affiliations

Authors

Contributions

R.B., C.P., J.-P.B., A.N., V.H., K.H., D.L., L.R., K.Y., T.O., T.Y., T.U., M.A., T.S., S.T., S.N., Y.T. and S.W. conceived and designed the experiments. T.L.P.-J., R.B., C.P., J.-P.B., A.N., K.H., C.L., D.L., L.R., K.Y., T.O., T.Y., Y.H., K.K., A.M., K.N. and M.N. performed the experiments. T.L.P.-J., R.B., C.P., J.-P.B., A.N., C.L., D.L., L.R., D.B., F.P., A.A.-T., J.C. and Y.L. analysed the data. T.L.P.-J., R.B., C.P., A.N., V.H., K.H., C.L., D.L., L.R. and K.Y. contributed materials and analysis tools. T.L.P.-J., R.B., C.P., J.-P.B., A.N., C.L., L.R., D.B., F.P. and T.O. wrote, discussed and commented on the paper.

Corresponding author

Correspondence to T. Le Pivert-Jolivet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–4.

Source data

Source Data Fig. 2

Table of peak positions and band depths for all grains assessed in this study.

Source Data Fig. 4

Table of peak positions and band depths for all grains assessed in this study.

Source Data Fig. 5

Table of peak positions and band depths for all grains assessed in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Pivert-Jolivet, T., Brunetto, R., Pilorget, C. et al. Space weathering record and pristine state of Ryugu samples from MicrOmega spectral analysis. Nat Astron 7, 1445–1453 (2023). https://doi.org/10.1038/s41550-023-02092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02092-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing