Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dilution of chemical enrichment in galaxies 600 Myr after the Big Bang

Abstract

The evolution of galaxies throughout the last 12 Gyr of cosmic time has followed a single, universal relation that connects star-formation rates (SFRs), stellar masses (M) and chemical abundances. Deviation from this fundamental scaling relation would imply a drastic change in the processes that regulate galaxy evolution. Observations have suggested the possibility that this relation may be broken in the very early Universe. However, until recently, chemical abundances of galaxies could be measured reliably only as far back as redshift z = 3.3. With the James Webb Space Telescope, we can now characterize the SFR, M and chemical abundances of galaxies during the first few hundred million years after the Big Bang, at redshifts z = 7–10. We show that galaxies at this epoch follow unique SFR–M–main-sequence and mass–metallicity scaling relations, but their chemical abundance is one-fourth of that expected from the fundamental–metallicity relation of later galaxies. These findings suggest that galaxies at this time are still intimately connected with the intergalactic medium and subject to continuous infall of pristine gas, which effectively dilutes their metal abundances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Imaging and spectroscopic data of CEERS-z7382.
Fig. 2: The star-forming galaxy SFR–M main sequence at redshifts z = 7–10.
Fig. 3: The mass-metallicity relation of galaxies at redshifts z = 7–10.
Fig. 4: The fundamental-metallicity relation of galaxies at redshifts z = 7–10.

Similar content being viewed by others

Data availability

The JWST imaging and spectroscopic data are publicly available on the JWST MAST archive at https://mast.stsci.edu. The data has been processed using public software codes grizli v.1.8.3 (ref. 32) and msaexp v.0.6.7 (refs. 33,60). The reduced data are available from the corresponding author upon reasonable request.

References

  1. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780, 1–64 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  2. Maiolino, R. & Mannucci, F. De re metallica: the cosmic chemical evolution of galaxies. Astron. Astrophys. Rev. 27, 3 (2019).

    Article  ADS  Google Scholar 

  3. Matthee, J. et al. EIGER. II. First spectroscopic characterization of the young stars and ionized gas associated with strong Hβ and [O III] line-emission in galaxies at z = 5–7 with JWST. Astrophys. J. 950, 67 (2023).

    Article  ADS  Google Scholar 

  4. Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  5. Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article  ADS  Google Scholar 

  6. Whitler, L. et al. Star formation histories of UV-luminous galaxies at z ≈ 6.8: implications for stellar mass assembly at early cosmic times. Mon. Not. R. Astron. Soc. 519, 5859–5881 (2023).

    Article  ADS  Google Scholar 

  7. Giménez-Arteaga, C. et al. Spatially resolved properties of galaxies at 5 < z < 9 in the SMACS 0723 JWST ERO field. Astrophys. J. 948, 126 (2023).

    Article  ADS  Google Scholar 

  8. Pacifici, C. et al. The art of measuring physical parameters in galaxies: a critical assessment of spectral energy distribution fitting techniques. Astrophys. J. 944, 141 (2023).

    Article  ADS  Google Scholar 

  9. Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astr. 36, 189–232 (1998).

    Article  ADS  Google Scholar 

  10. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  11. Osterbrock, D. E. & Ferland, G. J. Astrophysics of gaseous nebulae and active galactic nuclei (University Science Books, 2006).

  12. Thorne, J. E. et al. Deep extragalactic visible legacy survey (DEVILS): SED fitting in the D10-COSMOS field and the evolution of the stellar mass function and SFR-M relation. Mon. Not. R. Astron. Soc. 505, 540–567 (2021).

    Article  ADS  Google Scholar 

  13. Hutter, A. et al. Astraeus I: the interplay between galaxy formation and reionization. Mon. Not. R. Astron. Soc. 503, 3698–3723 (2021).

    Article  ADS  Google Scholar 

  14. D’Silva, J. C. J., Lagos, C. D. P., Davies, L. J. M., Lovell, C. C. & Vijayan, A. P. Unveiling the main sequence of galaxies at z ≥ 5 with the JWST: predictions from simulations. Mon. Not. R. Astron. Soc. 518, 456–476 (2023).

    Article  ADS  Google Scholar 

  15. Ceverino, D., Klessen, R. S. & Glover, S. C. O. FirstLight - II. Star formation rates of primeval galaxies from z=5-15. Mon. Not. R. Astron. Soc. 480, 4842–4850 (2018).

    ADS  Google Scholar 

  16. Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    Article  ADS  Google Scholar 

  17. Sanders, R. L. et al. Direct T_e-based metallicities of z=2-9 galaxies with JWST/NIRSpec: empirical metallicity calibrations applicable from reionization to cosmic noon. Preprint at https://doi.org/10.48550/arXiv.2303.08149 (2023).

  18. Nakajima, K. et al. EMPRESS. v. metallicity diagnostics of galaxies over 12 + log(O/H) ≈ 6.9-8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. S. 262, 3 (2022).

    Article  ADS  Google Scholar 

  19. Curti, M., Mannucci, F., Cresci, G. & Maiolino, R. The mass-metallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies. Mon. Not. R. Astron. Soc. 491, 944–964 (2020).

    Article  ADS  Google Scholar 

  20. Ucci, G. et al. Astraeus V: the emergence and evolution of metallicity scaling relations during the epoch of reionization. Mon. Not. R. Astron. Soc. 518, 3557–3575 (2023).

    Article  ADS  Google Scholar 

  21. Langan, I., Ceverino, D. & Finlator, K. Weak evolution of the mass-metallicity relation at cosmic dawn in the FirstLight simulations. Mon. Not. R. Astron. Soc. 494, 1988–1993 (2020).

    Article  ADS  Google Scholar 

  22. Lovell, C. C. et al. First light and reionization epoch simulations (FLARES) - I. environmental dependence of high-redshift galaxy evolution. Mon. Not. R. Astron. Soc. 500, 2127–2145 (2021).

    Article  ADS  Google Scholar 

  23. Mannucci, F., Cresci, G., Maiolino, R., Marconi, A. & Gnerucci, A. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 408, 2115–2127 (2010).

    Article  ADS  Google Scholar 

  24. Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass-metallicity relation from z = 0 to z ~ 3.3. Astrophys. J. 914, 19 (2021).

    Article  ADS  Google Scholar 

  25. Troncoso, P. et al. Metallicity evolution, metallicity gradients, and gas fractions at z ~3.4. Astron. Astrophys. 563, A58 (2014).

    Article  Google Scholar 

  26. Onodera, M. et al. ISM excitation and metallicity of star-forming galaxies at z ≈ 3.3 from near-IR spectroscopy. Astrophys. J. 822, 42 (2016).

    Article  ADS  Google Scholar 

  27. Curti, M. et al. The chemical enrichment in the early universe as probed by JWST via direct metallicity measurements at z ~ 8. Mon. Not. R. Astron. Soc. 518, 425–438 (2023).

    Article  ADS  Google Scholar 

  28. Lagos, Cd. P. et al. Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation. Mon. Not. R. Astron. Soc. 481, 3573–3603 (2018).

    Article  ADS  Google Scholar 

  29. Heintz, K. E. et al. The ALMA REBELS survey: the cosmic H I gas mass density in galaxies at z ≈ 7. Astrophys. J. Lett. 934, L27 (2022).

    Article  ADS  Google Scholar 

  30. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astr. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  31. Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  32. Brammer, G. Grizli: Grism redshift and line analysis software. Astrophysics Source Code Library, record ascl:1905.001 (2019).

  33. Brammer, G. msaexp: NIRSpec analysis tools. GitHub https://github.com/gbrammer/msaexp (2022).

  34. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    Article  ADS  Google Scholar 

  35. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    Article  Google Scholar 

  36. Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    Article  ADS  Google Scholar 

  37. Williams, H. et al. A magnified compact galaxy at redshift 9.51 with strong nebular emission lines. Science 380, 416–420 (2023).

    Article  ADS  Google Scholar 

  38. Endsley, R. et al. A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z ~ 7 – 8 galaxies. Mon. Not. R. Astron. Soc. 524, 2312–2330 (2022).

  39. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  40. Ferland, G. J. et al. The 2017 release Cloudy. Rev. Mex. Astron. Astr. 53, 385–438 (2017).

    ADS  Google Scholar 

  41. Sugahara, Y. et al. Bridging optical and far-infrared emission-line diagrams of galaxies from local to the epoch of reionization: characteristic high [O III] 88 μm/SFR at z > 6. Astrophys. J. 935, 119 (2022).

    Article  ADS  Google Scholar 

  42. Salim, S., Boquien, M. & Lee, J. C. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).

    Article  ADS  Google Scholar 

  43. Iyer, K. G. et al. Nonparametric star formation history reconstruction with gaussian processes. I. Counting major episodes of star formation. Astrophys. J. 879, 116 (2019).

    Article  ADS  Google Scholar 

  44. Leja, J., Carnall, A. C., Johnson, B. D., Conroy, C. & Speagle, J. S. How to measure galaxy star formation histories. II. Nonparametric models. Astrophys. J. 876, 3 (2019).

    Article  ADS  Google Scholar 

  45. Tacchella, S. et al. JWST NIRCam + NIRSpec: interstellar medium and stellar populations of young galaxies with rising star formation and evolving gas reservoirs. Mon. Not. R. Astron. Soc. 522, 6236–6249 (2023).

    Article  ADS  Google Scholar 

  46. Carnall, A. C. et al. A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories. Mon. Not. R. Astron. Soc. 518, L45–L50 (2023).

    Article  ADS  Google Scholar 

  47. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  48. Ma, X. et al. The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: a view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 453, 960–975 (2015).

    Article  ADS  Google Scholar 

  49. Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G. & Thuan, T. X. The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey. Astron. Astrophys. 448, 955–970 (2006).

    Article  ADS  Google Scholar 

  50. Nakajima, K. et al. JWST census for the mass-metallicity star-formation relations at z=4-10 with self-consistent flux calibration and the proper metallicity calibrators. Preprint at https://doi.org/10.48550/arXiv.2301.12825 (2023).

  51. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article  ADS  Google Scholar 

  52. Vijayan, A. P. et al. First light and reionization epoch simulations (FLARES) - II: the photometric properties of high-redshift galaxies. Mon. Not. R. Astron. Soc. 501, 3289–3308 (2021).

    ADS  Google Scholar 

  53. Wilkins, S. M. et al. First light and reionisation epoch simulations (FLARES) VII: the star formation and metal enrichment histories of galaxies in the early universe. Mon. Not. R. Astron. Soc. 518, 3935–3948 (2022).

    Article  ADS  Google Scholar 

  54. Kobayashi, C., Karakas, A. I. & Lugaro, M. The origin of elements from carbon to uranium. Astrophys. J. 900, 179 (2020).

    Article  ADS  Google Scholar 

  55. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the sun. Annu. Rev. Astron. Astr. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  56. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  57. Shapley, A. E. et al. JWST/NIRSpec Balmer-line measurements of star formation and dust attenuation at z ~ 3-6. Preprint at https://doi.org/10.48550/arXiv.2301.03241 (2023).

  58. Curti, M. et al. JADES: insights on the low-mass end of the mass–metallicity–star-formation rate relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2304.08516 (2023).

  59. Heintz, K. E. et al. The gas and stellar content of a metal-poor galaxy at z = 8.496 as revealed by JWST and ALMA. Astrophys. J. Lett. 944, L30 (2023).

    Article  ADS  Google Scholar 

  60. Brammer, G. msaexp: NIRSpec analysis tools. Zenodo (2022); https://zenodo.org/record/8314675

Download references

Acknowledgements

We thank D. Ceverino for his insight and suggestions on interpreting the FirstLight simulation output. We further acknowledge the GLASS, CEERS and UNCOVER collaborations; we are grateful they made their early data publicly available. K.E.H. acknowledges support from the Carlsberg Foundation Reintegration Fellowship Grant CF21-0103. C.A.M. and A.H. acknowledge support by the VILLUM FONDEN under grant no. 37459. The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant no. 140. This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST.

Author information

Authors and Affiliations

Authors

Contributions

K.E.H. wrote the manuscript and led the analysis. G.B.B. reduced and extracted the photometric and spectroscopic data. C.G.-A. and V.B.S. performed the SED modelling. All authors contributed to the manuscript and aided in the analyses and interpretations.

Corresponding author

Correspondence to Kasper E. Heintz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heintz, K.E., Brammer, G.B., Giménez-Arteaga, C. et al. Dilution of chemical enrichment in galaxies 600 Myr after the Big Bang. Nat Astron 7, 1517–1524 (2023). https://doi.org/10.1038/s41550-023-02078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02078-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing