Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A reproduction of the Milky Way’s Faraday rotation measure map in galaxy simulations from global to local scales

Abstract

Magnetic fields are of critical importance for our understanding of the origin and long-term evolution of the Milky Way. This is due to their decisive role in the dynamical evolution of the interstellar medium and their influence on the star-formation process1,2,3. Faraday rotation measures along many different sightlines across the Galaxy are a primary means to infer the magnetic field topology and strength from observations4,5,6,7. However, the interpretation of the data has been hampered by the failure of previous attempts to explain the observations in theoretical models and to synthesize a realistic multiscale all-sky rotation measures map8,9,10. We here utilize a cosmological magnetohydrodynamic simulation of the formation of the Milky Way, augment it with a new star-cluster population-synthesis model for a more realistic structure of the local interstellar medium11,12, and perform detailed polarized radiative transfer calculations on the resulting model13. This yields an accurate first-principles prediction of the Faraday sky as observed on Earth. The results reproduce the observations of the Galaxy not only on global scales but also on local scales of individual star-forming clouds. They also indicate that the Local Bubble14 containing our Sun dominates the rotation measures signal over large regions of the sky. Modern cosmological magnetohydrodynamic simulations of the Milky Way’s formation, combined with a plausible model for star formation, stellar feedback and the distribution of free electrons in the interstellar medium, explain the rotation measures observations remarkably well, and thus contribute to a better understanding of the origin of magnetic fields in our Galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: All-sky Faraday RM map of the Milky Way and of a model galaxy from the Auriga suite of cosmological simulations.
Fig. 2: Magnitude of the Faraday RM along the Galactic longitude and latitude.
Fig. 3: Multipole spectrum of RM maps for ten different observer positions compared to observational data for the Milky Way.

Similar content being viewed by others

Data availability

No data available.

Code availability

Cluster properties and ionization are calculated with the WARPFIELD code11,42 and the spectral synthesis code CLOUDY v.17.00 (http://www.nublado.org/), respectively. Cosmological simulations are performed by the moving mesh code AREPO30 (https://arepo-code.org/wp-content/userguide/index.html) and for the radiative transfer postprocessing we use the radiative transfer code POLARIS25 (https://portia.astrophysik.uni-kiel.de/polaris/). We used Python and its associated libraries including Astropy, NumPy and Matplotlib for data analysis and presentation.

References

  1. McKee, C. F. & Ostriker, E. C. Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007).

    ADS  Google Scholar 

  2. Heiles, C. & Haverkorn, M. Magnetic fields in the multiphase interstellar medium. Space Sci. Rev. 166, 293 (2012).

    ADS  Google Scholar 

  3. Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 24, 4 (2015).

    ADS  Google Scholar 

  4. Morris, D. & Berge, G. L. Direction of the galactic magnetic field in the vicinity of the Sun. Astrophys. J. 139, 1388 (1964).

    ADS  Google Scholar 

  5. Oppermann, N. et al. An improved map of the galactic Faraday sky. Astron. Astrophys. 542, A93 (2012).

    Google Scholar 

  6. Sun, X. H. et al. Faraday tomography of the North Polar Spur: constraints on the distance to the Spur and on the magnetic field of the Galaxy. Astrophys. J. 811, 40 (2015).

    ADS  Google Scholar 

  7. Hutschenreuter, S. et al. The Galactic Faraday rotation sky 2020. Astron. Astrophys. 657, A43 (2022).

    Google Scholar 

  8. Beck, M. C. et al. New constraints on modelling the random magnetic field of the MW. J. Cosmol. Astropart. Phys. 5, 056 (2016).

    ADS  Google Scholar 

  9. Butsky, I., Zrake, J., Kim, J.-h, Yang, H.-I. & Abel, T. Ab initio simulations of a supernova-driven galactic dynamo in an isolated disk galaxy. Astrophys. J. Lett. 843, 113 (2017).

    Google Scholar 

  10. Pakmor, R. et al. Faraday rotation maps of disc galaxies. Mon. Not. R. Astron. Soc. 481, 4410–4418 (2018).

    ADS  Google Scholar 

  11. Rahner, D., Pellegrini, E. W., Glover, SimonC. O. & Klessen, R. S. Winds and radiation in unison: a new semi-analytic feedback model for cloud dissolution. Mon. Not. R. Astron. Soc. 470, 4453 (2017).

    ADS  Google Scholar 

  12. Pellegrini, E. W. et al. WARPFIELD population synthesis: the physics of (extra-)Galactic star formation and feedback-driven cloud structure and emission from sub-to-kpc scales. Mon. Not. R. Astron. Soc. 498, 3193–3214 (2020).

    ADS  Google Scholar 

  13. Brauer, R., Wolf, S., Reissl, S. & Ober, F. Magnetic fields in molecular clouds: limitations of the analysis of Zeeman observations. Astron. Astrophys. 601, A90 (2017).

    ADS  Google Scholar 

  14. Zucker, C. et al. Star formation near the Sun is driven by expansion of the Local Bubble. Nature 601, 334–337 (2022).

    ADS  Google Scholar 

  15. Klessen, R. S. and Glover, S. C. O. in Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality (eds Revaz, Y. et al.) 85 (Springer-Verlag, 2016).

  16. Andersson, B.-G., Lazarian, A. & Vaillancourt, J. E. Interstellar dust grain alignment. Annu. Rev. Astron. Astrophys. 53, 501–539 (2015).

    ADS  Google Scholar 

  17. Planck Collaboration. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds. Astron. Astrophys. 586, A138 (2016).

    Google Scholar 

  18. Lazarian, A., Yuen, K. H., Lee, H. & Cho, J. Synchrotron intensity gradients as tracers of interstellar magnetic fields. Astrophys. J. 842, 30 (2017).

    ADS  Google Scholar 

  19. Reissl, S., Brauer, R., Klessen, R. S. & Pellegrini, E. W. Radiative transfer with POLARIS. II.: modeling of synthetic galactic synchrotron observations. Astrophys. J. 885, 15 (2019).

    ADS  Google Scholar 

  20. Crutcher, R. M. Magnetic fields in molecular clouds: observations confront theory. Astrophys. J. 520, 706 (1999).

    ADS  Google Scholar 

  21. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (John Wiley & Sons, 1991).

  22. Pakmor, R., Marinacci, F. & Springel, V. Magnetic fields in cosmological simulations of disk galaxies. Astrophys. J. Lett. 783, L20 (2014).

    ADS  Google Scholar 

  23. Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 467, 179 (2017).

    ADS  Google Scholar 

  24. Pellegrini, E. W. et al. WARPFIELD-EMP: the self-consistent prediction of emission lines from evolving H II regions in dense molecular clouds. Mon. Not. R. Astron. Soc. 496, 339–363 (2020).

    ADS  Google Scholar 

  25. Reissl, S., Wolf, S. & Brauer, R. Radiative transfer with POLARIS. I.: analysis of magnetic fields through synthetic dust continuum polarization measurements. Astron. Astrophys. 593, A87 (2016).

    ADS  Google Scholar 

  26. Burn, B. J. On the depolarization of discrete radio sources by Faraday dispersion. Mon. Not. R. Astron. Soc. 133, 67 (1966).

    ADS  Google Scholar 

  27. Alves, M. I. R., Boulanger, F., Ferrière, K. & Montier, L. The Local Bubble: a magnetic veil to our Galaxy. Astron. Astrophys. 611, L5 (2018).

    ADS  Google Scholar 

  28. Shanahan, R. et al. Strong excess Faraday rotation on the inside of the Sagittarius Spiral Arm. Astrophys. J. Lett. 887, L7 (2019).

    ADS  Google Scholar 

  29. Mao, S. A. et al. Detection of microgauss coherent magnetic fields in a galaxy five billion years ago. Nat. Astron. 1, 621 (2017).

    ADS  Google Scholar 

  30. Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791 (2010).

    ADS  Google Scholar 

  31. Pakmor, R. üdiger et al. Magnetic field formation in the Milky Way like disc galaxies of the Auriga project. Mon. Not. R. Astron. Soc. 469, 3185–3199 (2017).

    ADS  Google Scholar 

  32. Rieder, M. & Teyssier, R. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields - I. The kinematic phase. Mon. Not. R. Astron. Soc. 457, 1722 (2016).

    ADS  Google Scholar 

  33. Rieder, M. & Teyssier, R. A small-scale dynamo in feedback-dominated galaxies - II. The saturation phase and the final magnetic configuration. Mon. Not. R. Astron. Soc. 471, 2674–2686 (2017).

    ADS  Google Scholar 

  34. Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    ADS  Google Scholar 

  35. Hopkins, P. F. et al. But what about…: cosmic rays, magnetic fields, conduction, and viscosity in galaxy formation. Mon. Not. R. Astron. Soc. 492, 3465–3498 (2020).

    ADS  Google Scholar 

  36. Ponnada, S. B. et al. Magnetic fields on FIRE: comparing B-fields in the multiphase ISM and CGM of simulated L* galaxies to observations. Mon. Not. R. Astron. Soc. 516, 4417–4431 (2022).

    ADS  Google Scholar 

  37. Ferrière, K. M. The interstellar environment of our galaxy. RvMP 73, 1031 (2001).

    ADS  Google Scholar 

  38. Schober, J., Schleicher, D., Federrath, C., Klessen, R. & Banerjee, R. Magnetic field amplification by small-scale dynamo action: dependence on turbulence models and Reynolds and Prandtl numbers. Phys. Rev. E 85, 026303 (2012).

    ADS  Google Scholar 

  39. Kolmogorov, A. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941).

  40. Brandenburg, A. & Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005).

    ADS  MathSciNet  Google Scholar 

  41. Federrath, C. et al. Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows. Phys. Rev. Lett. 107, 114504 (2011).

    ADS  Google Scholar 

  42. Rahner, D., Pellegrini, E. W., Glover, SimonC. O. & Klessen, R. S. WARPFIELD 2.0: feedback-regulated minimum star formation efficiencies of giant molecular clouds. Mon. Not. R. Astron. Soc. 483, 2547–2560 (2019).

    ADS  Google Scholar 

  43. Kennicutt, R. C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189 (1998).

    ADS  Google Scholar 

  44. Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019).

    ADS  Google Scholar 

  45. Ferland, G. J. et al. The 2017 release Cloudy. Rev. Mex. Astron. Astrofis. 53, 385 (2017).

    ADS  Google Scholar 

  46. Cordes, J. M. and Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of free electrons and its fluctuations. Preprint at https://doi.org/10.48550/arXiv.astro-ph/0207156 (2002).

  47. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS  Google Scholar 

  48. Reissl, S. et al. Magnetic fields in star-forming systems (I): idealized synthetic signatures of dust polarization and Zeeman splitting in filaments. Mon. Not. R. Astron. Soc. 481, 2507 (2018).

    ADS  Google Scholar 

  49. Hutschenreuter, S. & Enßlin, T. A. The Galactic Faraday depth sky revisited. Astron. Astrophys. 633, A150 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

S.R., R.S.K., E.W.P. and D.R. acknowledge support from the Deutsche Forschungsgemeinschaft in the Collaborative Research Center (SFB 881, ID 138713538) ‘The Milky Way System’ (subprojects A1, B1, B2 and B8) and from the Heidelberg Cluster of Excellence (EXC 2181, ID 390900948) ‘STRUCTURES: A unifying approach to emergent phenomena in the physical world, mathematics, and complex data’, funded by the German Excellence Strategy. R.S.K. also expresses thanks for funding from the European Research Council in the ERC Synergy Grant ‘ECOGAL – Understanding our Galactic ecosystem: From the disk of the Milky Way to the formation sites of stars and planets’ (ID 855130). R.G. acknowledges support from an STFC Ernest Rutherford Fellowship (ST/W003643/1). F.A.G. acknowledges support from ANID FONDECYT Regular 1211370, the Max Planck Society through a Partner Group grant and ANID Basal Project FB210003. The project benefited from computing resources provided by the State of Baden-Württemberg through bwHPC and DFG through grant INST 35/1134-1 FUGG, and from the data storage facility SDS@hd supported through grant INST 35/1314-1 FUGG. The Heidelberg team also express thanks for computing time provided by the Leibniz Computing Center (LRZ) for project pr74nu.

Author information

Authors and Affiliations

Authors

Contributions

S.R. has run all polarized radiative transfer calculations and has performed most of the analysis. The text was jointly written by S.R. and R.S.K. The WARPFIELD cloud-cluster evolution model was mostly contributed by E.W.P. and D.R. The Augiga-6 data and support with the data handling have been provided by R.P., R.G., F.G., F.M. and V.S.

Corresponding author

Correspondence to Stefan Reissl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reissl, S., Klessen, R.S., Pellegrini, E.W. et al. A reproduction of the Milky Way’s Faraday rotation measure map in galaxy simulations from global to local scales. Nat Astron 7, 1295–1300 (2023). https://doi.org/10.1038/s41550-023-02053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02053-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing