Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of a radiation component from the Vela pulsar reaching 20 teraelectronvolts

An Author Correction to this article was published on 06 November 2023

This article has been updated

Abstract

Gamma-ray observations have established energetic isolated pulsars as outstanding particle accelerators and antimatter factories. However, many questions are still open regarding the acceleration and radiation processes involved, as well as the locations where they occur. The radiation spectra of all gamma-ray pulsars observed to date show strong cutoffs or a break above energies of a few gigaelectronvolts. Using the High Energy Stereoscopic System’s Cherenkov telescopes, we discovered a radiation component from the Vela pulsar which emerges beyond this generic cutoff and extends up to energies of at least 20 teraelectronvolts. This is an order of magnitude larger than in the case of the Crab pulsar, the only other pulsar detected in the teraelectronvolt energy range. Our results challenge the state-of-the-art models for the high-energy emission of pulsars. Furthermore, they pave the way for investigating other pulsars through their multiteraelectronvolt emission, thereby imposing additional constraints on the acceleration and emission processes in their extreme energy limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phasograms of Vela as measured with H.E.S.S. CT1–4 for energies above 5 TeV, with H.E.S.S. CT5 in the 10 to 80 GeV range and with the Fermi-LAT above 1 GeV and 10 GeV.
Fig. 2: Excess map of the P2 pulse of Vela as measured with H.E.S.S. CT1–4 for energies above 5 TeV.
Fig. 3: Spectral energy distribution of the P2 pulse of Vela.
Fig. 4: Sketch illustrating main scenarios of particle acceleration and gamma-ray emission.

Similar content being viewed by others

Data availability

The H.E.S.S. raw data used in this study are not public but belong to the H.E.S.S. Collaboration. The high-level data for the light curve (Fig. 1), and the confidence interval for the spectral energy distributions (Fig. 3) are available at: https://www.mpi-hd.mpg.de/hfm/HESS/pages/publications/auxiliary/2023_Vela_MultiTeV.

Change history

References

  1. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    ADS  Google Scholar 

  2. Abdo, A. A. et al. The second Fermi large area telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. Ser. 208, 17 (2013).

    ADS  Google Scholar 

  3. Kanbach, G. et al. EGRET observations of the VELA pulsar, PSR0833-45. Astron. Astrophys. 289, 855–867 (1994).

    ADS  Google Scholar 

  4. Nolan, P. L. et al. EGRET observations of pulsars. Astron. Astrophys. Suppl. 120, 61–64 (1996).

    Google Scholar 

  5. Aliu, E. et al. Observation of pulsed γ-rays above 25 GeV from the Crab pulsar with MAGIC. Science 322, 1221–1224 (2008).

    ADS  Google Scholar 

  6. Abdo, A. A. et al. Fermi large area telescope observations of the Vela pulsar. Astrophys. J. 696, 1084–1093 (2009).

    ADS  Google Scholar 

  7. Abdo, A. A. et al. The Vela pulsar: results from the first year of Fermi LAT observations. Astrophys. J. 713, 154–165 (2010).

    ADS  Google Scholar 

  8. VERITAS Collaboration et al. Detection of pulsed gamma rays above 100 GeV from the Crab pulsar. Science 334, 69–72 (2011).

  9. Aleksić, J. et al. Phase-resolved energy spectra of the Crab pulsar in the range of 50-400 GeV measured with the MAGIC telescopes. Astron. Astrophys. 540, A69 (2012).

    Google Scholar 

  10. Ansoldi, S. et al. Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC. Astron. Astrophys. 585, A133 (2016).

    Google Scholar 

  11. Aharonian, F. et al. Search for pulsed VHE gamma-ray emission from young pulsars with HESS. Astron. Astrophys. 466, 543–554 (2007).

    ADS  Google Scholar 

  12. Archer, A. et al. A search for pulsed very high-energy gamma-rays from 13 young pulsars in archival VERITAS data. Astrophys. J. 876, 95 (2019).

    ADS  Google Scholar 

  13. Large, M. I., Vaughan, A. E. & Mills, B. Y. A pulsar supernova association? Nature 220, 340–341 (1968).

    ADS  Google Scholar 

  14. Thompson, D. J., Fichtel, C. E., Kniffen, D. A. & Ogelman, H. B. SAS-2 high-energy gamma-ray observations of the VELA pulsar. Astrophys. J. Lett. 200, L79–L82 (1975).

    ADS  Google Scholar 

  15. Dodson, R., Legge, D., Reynolds, J. E. & McCulloch, P. M. The Vela pulsar’s proper motion and parallax derived from VLBI observations. Astrophys. J. 596, 1137–1141 (2003).

    ADS  Google Scholar 

  16. H. E. S. S. Collaboration et al. First ground-based measurement of sub-20 GeV to 100 GeV γ-Rays from the Vela pulsar with H.E.S.S. II. Astron. Astrophys. 620, A66 (2018).

  17. de Jager, O. C., Raubenheimer, B. C. & Swanepoel, J. W. H. A powerful test for weak periodic signals with unknown light curve shape in sparse data. Astron. Astrophys. 221, 180–190 (1989).

    ADS  Google Scholar 

  18. de Jager, O. C. On periodicity tests and flux limit calculations for gamma-ray pulsars. Astrophys. J. 436, 239 (1994).

    ADS  Google Scholar 

  19. Li, T.-P. & Ma, Y.-Q. Analysis methods for results in gamma-ray astronomy. Astrophys. J. 272, 317–324 (1983).

    ADS  Google Scholar 

  20. Smith, D. A. et al. Searching a thousand radio pulsars for gamma-ray emission. Astrophys. J. 871, 78 (2019).

    ADS  Google Scholar 

  21. Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from rapidly spinning pulsars. I - Outer magnetosphere gaps. II - VELA and Crab. Astrophys. J. 300, 500–539 (1986).

    ADS  Google Scholar 

  22. Romani, R. W. Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys. J. 470, 469 (1996).

    ADS  Google Scholar 

  23. Hirotani, K. Gamma-ray emissions from pulsars: spectra of the TeV fluxes from outer gap accelerators. Astrophys. J. 549, 495–508 (2001).

    ADS  Google Scholar 

  24. Bogovalov, S. V. & Aharonian, F. A. Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar. Mon. Not. R. Astron. Soc. 313, 504–514 (2000).

    ADS  Google Scholar 

  25. Harding, A. K. et al. The multicomponent nature of the Vela pulsar nonthermal X-ray Spectrum. Astrophys. J. 576, 376–380 (2002).

    ADS  Google Scholar 

  26. Manzali, A., De Luca, A. & Caraveo, P. A. Phase-resolved spectroscopy of the Vela pulsar with XMM-Newton. Astrophys. J. 669, 570–578 (2007).

    ADS  Google Scholar 

  27. Romani, R. W., Kargaltsev, O. & Pavlov, G. G. The Vela pulsar in the ultraviolet. Astrophys. J. 627, 383–389 (2005).

    ADS  Google Scholar 

  28. Mignani, R. P., Zharikov, S. & Caraveo, P. A. The optical spectrum of the Vela pulsar. Astron. Astrophys. 473, 891–896 (2007).

    ADS  Google Scholar 

  29. Spolon, A. et al. Timing analysis and pulse profile of the Vela pulsar in the optical band from Iqueye observations. Mon. Not. R. Astron. Soc. 482, 175–183 (2019).

    ADS  Google Scholar 

  30. Zyuzin, D., Shibanov, Y., Danilenko, A., Mennickent, R. E. & Zharikov, S. The Vela pulsar and its likely counter-jet in the Ks band. Astrophys. J. 775, 101 (2013).

    ADS  Google Scholar 

  31. Aharonian, F. A. & Bogovalov, S. V. Exploring physics of rotation powered pulsars with sub-10 GeV imaging atmospheric Cherenkov telescopes. New Astron. 8, 85–103 (2003).

    ADS  Google Scholar 

  32. Arons, J. & Scharlemann, E. T. Pair formation above pulsar polar caps: structure of the low altitude acceleration zone. Astrophys. J. 231, 854–879 (1979).

    ADS  Google Scholar 

  33. Muslimov, A. G. & Harding, A. K. Extended acceleration in slot gaps and pulsar high-energy emission. Astrophys. J. 588, 430–440 (2003).

    ADS  Google Scholar 

  34. Kalapotharakos, C., Brambilla, G., Timokhin, A., Harding, A. K. & Kazanas, D. Three-dimensional kinetic pulsar magnetosphere models: connecting to gamma-ray observations. Astrophys. J. 857, 44 (2018).

    ADS  Google Scholar 

  35. Harding, A. K., Kalapotharakos, C., Barnard, M. & Venter, C. Multi-TeV emission from the Vela pulsar. Astrophys. J. Lett. 869, L18 (2018).

    ADS  Google Scholar 

  36. Michel, F. C. Coherent neutral sheet radiation from pulsars. Comments Astrophys. Space Phys. 3, 80 (1971).

    ADS  Google Scholar 

  37. Coroniti, F. V. Magnetically striped relativistic magnetohydrodynamic winds: the Crab nebula revisited. Astrophys. J. 349, 538 (1990).

    ADS  Google Scholar 

  38. Michel, F. C. Magnetic structure of Pulsar winds. Astrophys. J. 431, 397 (1994).

    ADS  Google Scholar 

  39. Lyubarskii, Y. E. A model for the energetic emission from pulsars. Astron. Astrophys. 311, 172–178 (1996).

    ADS  Google Scholar 

  40. Kirk, J. G. & Lyubarsky, D. Y. Reconnection in pulsar winds. Publ. Astron. Soc. Aust. 18, 415–420 (2001).

    ADS  Google Scholar 

  41. Kirk, J. G., Skjæraasen, O. & Gallant, Y. A. Pulsed radiation from neutron star winds. Astron. Astrophys. 388, L29–L32 (2002).

    ADS  Google Scholar 

  42. Pétri, J. High-energy emission from the pulsar striped wind: a synchrotron model for gamma-ray pulsars. Mon. Not. R. Astron. Soc. 424, 2023–2027 (2012).

    ADS  Google Scholar 

  43. Takata, J., Shibata, S., Hirotani, K. & Chang, H. K. A two-dimensional electrodynamical outer gap model for γ-ray pulsars: γ-ray spectrum. Mon. Not. R. Astron. Soc. 366, 1310–1328 (2006).

    ADS  Google Scholar 

  44. Hirotani, K. Outer-gap versus slot-gap models for pulsar high-energy emissions: the case of the Crab pulsar. Astrophys. J. Lett. 688, L25 (2008).

    ADS  Google Scholar 

  45. Takata, J., Ng, C. W. & Cheng, K. S. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model. Mon. Not. R. Astron. Soc. 455, 4249–4266 (2016).

    ADS  Google Scholar 

  46. Viganò, D. & Torres, D. F. Modelling of the γ-ray pulsed spectra of Geminga, Crab, and Vela with synchro-curvature radiation. Mon. Not. R. Astron. Soc. 449, 3755–3765 (2015).

    ADS  Google Scholar 

  47. Hirotani, K. Particle accelerator in pulsar magnetospheres: super-Goldreich-Julian current with ion emission from the neutron star surface. Astrophys. J. 652, 1475–1493 (2006).

    ADS  Google Scholar 

  48. Kalapotharakos, C., Harding, A. K., Kazanas, D. & Wadiasingh, Z. A fundamental plane for gamma-ray pulsars. Astrophys. J. Lett. 883, L4 (2019).

    ADS  Google Scholar 

  49. Kalapotharakos, C., Harding, A. K., Kazanas, D. & Brambilla, G. Fermi gamma-ray pulsars: understanding the high-energy emission from dissipative magnetospheres. Astrophys. J. 842, 80 (2017).

    ADS  Google Scholar 

  50. Harding, A. K., Venter, C. & Kalapotharakos, C. Very-high-energy emission from pulsars. Astrophys. J. 923, 194 (2021).

    ADS  Google Scholar 

  51. Barnard, M., Venter, C., Harding, A. K., Kalapotharakos, C. & Johnson, T. J. Probing the high-energy gamma-ray emission mechanism in the Vela pulsar via phase-resolved spectral and energy-dependent light-curve modeling. Astrophys. J. 925, 184 (2022).

    ADS  Google Scholar 

  52. Philippov, A. & Kramer, M. Pulsar magnetospheres and their radiation. Annu. Rev. Astron. Astrophys. 60, 495–558 (2022).

    ADS  Google Scholar 

  53. Arka, I. & Dubus, G. Pulsed high-energy γ-rays from thermal populations in the current sheets of pulsar winds. Astron. Astrophys. 550, A101 (2013).

    ADS  Google Scholar 

  54. Cerutti, B., Philippov, A. A. & Spitkovsky, A. Modelling high-energy pulsar light curves from first principles. Mon. Not. R. Astron. Soc. 457, 2401–2414 (2016).

    ADS  Google Scholar 

  55. Cerutti, B. & Philippov, A. A. Dissipation of the striped pulsar wind. Astron. Astrophys. 607, A134 (2017).

    ADS  Google Scholar 

  56. Philippov, A. A. & Spitkovsky, A. Ab-initio pulsar magnetosphere: particle acceleration in oblique rotators and high-energy emission modeling. Astrophys. J. 855, 94 (2018).

    ADS  Google Scholar 

  57. Mochol, I. & Pétri, J. Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds. Mon. Not. R. Astron. Soc. 449, L51–L55 (2015).

    ADS  Google Scholar 

  58. Mochol, I. in Modelling Pulsar Wind Nebulae Vol. 446 (ed. Torres, D. F.) 135–159 (Springer, 2017).

  59. Kirk, J. G. Particle acceleration in relativistic current sheets. Phys. Rev. Lett. 92, 181101 (2004).

    ADS  Google Scholar 

  60. Uzdensky, D. A., Cerutti, B. & Begelman, M. C. Reconnection-powered linear accelerator and gamma-ray flares in the Crab nebula. Astrophys. J. Lett. 737, L40 (2011).

    ADS  Google Scholar 

  61. Werner, G. R., Uzdensky, D. A., Cerutti, B., Nalewajko, K. & Begelman, M. C. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. Lett. 816, L8 (2016).

    ADS  Google Scholar 

  62. Werner, G. R. & Uzdensky, D. A. Nonthermal particle acceleration in 3D relativistic magnetic reconnection in pair plasma. Astrophys. J. Lett. 843, L27 (2017).

    ADS  Google Scholar 

  63. Cerutti, B., Philippov, A. A. & Dubus, G. Dissipation of the striped pulsar wind and non-thermal particle acceleration: 3D PIC simulations. Astron. Astrophys. 642, A204 (2020).

    ADS  Google Scholar 

  64. Petropoulou, M. & Sironi, L. The steady growth of the high-energy spectral cut-off in relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 481, 5687–5701 (2018).

    ADS  Google Scholar 

  65. Zhang, H., Sironi, L. & Giannios, D. Fast particle acceleration in three-dimensional relativistic reconnection. Astrophys. J. 922, 261 (2021).

    ADS  Google Scholar 

  66. Uzdensky, D. A. Relativistic non-thermal particle acceleration in two-dimensional collisionless magnetic reconnection. J. Plasma Phys. 88, 905880114 (2022).

    Google Scholar 

  67. Aharonian, F. A., Bogovalov, S. V. & Khangulyan, D. Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar. Nature 482, 507–509 (2012).

    ADS  Google Scholar 

  68. Tavernier, T. A Quest for the Emission of the Vela pulsar at Very High Energies: Observation, Detection, and Study from GeV to TeV with the Fermi Satellite and the H.E.S.S. Cherenkov Imaging Telescopes. PhD thesis, Univ. Paris 7 (2015).

  69. Spir-Jacob, M. Observation and Detection of Pulsars with the H.E.S.S. Gamma-Ray Telescopes, and Phenomenology of a New Pulsed Spectral Component Reaching 20 TeV. PhD thesis, Univ. Paris 7 (2019).

  70. Morini, M. Inverse Compton gamma-rays from pulsars. I. The VELA pulsar. Mon. Not. R. Astron. Soc. 202, 495–510 (1983).

    ADS  Google Scholar 

  71. Romani, R. W. & Yadigaroglu, I. A. Gamma-ray pulsars: emission zones and viewing geometries. Astrophys. J. 438, 314 (1995).

    ADS  Google Scholar 

  72. Cheng, K. S., Ruderman, M. & Zhang, L. A three-dimensional outer magnetospheric gap model for gamma-ray pulsars: geometry, pair production, emission morphologies, and phase-resolved spectra. Astrophys. J. 537, 964–976 (2000).

    ADS  Google Scholar 

  73. Dyks, J. & Rudak, B. Two-pole caustic model for high-energy light curves of pulsars. Astrophys. J. 598, 1201–1206 (2003).

    ADS  Google Scholar 

  74. Dyks, J., Harding, A. K. & Rudak, B. Relativistic effects and polarization in three high-energy pulsar models. Astrophys. J. 606, 1125–1142 (2004).

    ADS  Google Scholar 

  75. Bai, X.-N. & Spitkovsky, A. Uncertainties of modeling gamma-ray pulsar light curves using vacuum dipole magnetic field. Astrophys. J. 715, 1270–1281 (2010).

    ADS  Google Scholar 

  76. Contopoulos, I. & Kalapotharakos, C. The pulsar synchrotron in 3D: curvature radiation. Mon. Not. R. Astron. Soc. 404, 767–778 (2010).

    ADS  Google Scholar 

  77. Bai, X.-N. & Spitkovsky, A. Modeling of gamma-ray pulsar light curves using the force-free magnetic field. Astrophys. J. 715, 1282–1301 (2010).

    ADS  Google Scholar 

  78. Cerutti, B., Mortier, J. & Philippov, A. A. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars. Mon. Not. R. Astron. Soc. 463, L89–L93 (2016).

    ADS  Google Scholar 

  79. Harding, A. K. & Kalapotharakos, C. Multiwavelength polarization of rotation-powered pulsars. Astrophys. J. 840, 73 (2017).

    ADS  Google Scholar 

  80. Aharonian, F. et al. Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array. Chinese Phys. C 44, 065001 (2020).

    ADS  Google Scholar 

  81. Acharya, B. S. et al. Introducing the CTA concept. Astropart. Phys. 43, 3–18 (2013).

    ADS  Google Scholar 

  82. Adriani, O. et al. An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature 458, 607–609 (2009).

    ADS  Google Scholar 

  83. Aguilar, M. et al. First result from the alpha magnetic spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV. Phys. Rev. Lett. 110, 141102 (2013).

    ADS  Google Scholar 

  84. Aharonian, F. et al. Observations of the Crab nebula with HESS. Astron. Astrophys. 457, 899–915 (2006).

    ADS  Google Scholar 

  85. Hofmann, W. et al. Comparison of techniques to reconstruct VHE gamma-ray showers from multiple stereoscopic Cherenkov images. Astropart. Phys. 12, 135–143 (1999).

    ADS  Google Scholar 

  86. Becherini, Y., Djannati-Ataï, A., Marandon, V., Punch, M. & Pita, S. A new analysis strategy for detection of faint γ-ray sources with Imaging Atmospheric Cherenkov Telescopes. Astropart. Phys. 34, 858–870 (2011).

    ADS  Google Scholar 

  87. Hoecker, A. et al. TMVA: toolkit for multivariate data analysis. Preprint at https://arxiv.org/abs/physics/0703039 (2007).

  88. Bernlöhr, K. Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and sim_ telarray. Astropart. Phys. 30, 149–158 (2008).

    ADS  Google Scholar 

  89. de Naurois, M. & Rolland, L. A high performance likelihood reconstruction of γ-rays for imaging atmospheric Cherenkov telescopes. Astropart. Phys. 32, 231–252 (2009).

    ADS  Google Scholar 

  90. Ohm, S., van Eldik, C. & Egberts, K. γ/hadron separation in very-high-energy γ-ray astronomy using a multivariate analysis method. Astropart. Phys. 31, 383–391 (2009).

    ADS  Google Scholar 

  91. Parsons, R. D. & Hinton, J. A. A monte carlo template based analysis for air-cherenkov arrays. Astropart. Phys. 56, 26–34 (2014).

    ADS  Google Scholar 

  92. Funk, S. et al. The trigger system of the H.E.S.S. telescope array. Astropart. Phys. 22, 285–296 (2004).

    ADS  Google Scholar 

  93. Hobbs, G. B., Edwards, R. T. & Manchester, R. N. TEMPO2, a new pulsar-timing package - I. An overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006).

    ADS  Google Scholar 

  94. Palfreyman, J., Dickey, J. M., Hotan, A., Ellingsen, S. & van Straten, W. Alteration of the magnetosphere of the Vela pulsar during a glitch. Nature 556, 219–222 (2018).

    ADS  Google Scholar 

  95. Piron, F. et al. Temporal and spectral gamma-ray properties of Mkn 421 above 250 GeV from CAT observations between 1996 and 2000. Astron. Astrophys. 374, 895–906 (2001).

    ADS  Google Scholar 

  96. Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Google Scholar 

  97. Zabalza, V. naima: a Python package for inference of relativistic particle energy distributions from observed nonthermal spectra. PoS ICRC2015, 922–930 (2016).

    Google Scholar 

Download references

Acknowledgements

The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the German Research Foundation (DFG), the Helmholtz Association, the Alexander von Humboldt Foundation, the French Ministry of Higher Education, Research and Innovation, the Centre National de la Recherche Scientifique (CNRS/IN2P3 and CNRS/INSU), the Commissariat à l’énergie atomique et aux énergies alternatives (CEA), the UK Science and Technology Facilities Council (STFC), the Irish Research Council (IRC) and the Science Foundation Ireland (SFI), the Knut and Alice Wallenberg Foundation, the Polish Ministry of Education and Science (agreement no. 2021/WK/06), the South African Department of Science and Technology and National Research Foundation, the National Commission on Research, Science & Technology of Namibia (NCRST), the Austrian Federal Ministry of Education, Science and Research and the Austrian Science Fund (FWF), the Australian Research Council (ARC), the Japan Society for the Promotion of Science, the University of Amsterdam and the Science Committee of Armenia (grant no. 21AG-1C085). Work at NRL is supported by NASA. We appreciate the excellent work of the technical support staff in Berlin, Zeuthen, Heidelberg, Palaiseau, Paris, Saclay, Tübingen and in Namibia in the construction and operation of the equipment. This work benefited from services provided by the H.E.S.S. Virtual Organization supported by the national resource providers of the EGI Federation. This research made use of the Python packages Astropy96 and naima97. A.D.-A. thanks B. Cerutti and J. Pétri for fruitful discussions on the striped-wind model during the ‘Entretiens sur l’observation et la modélisation des pulsars’ sessions funded by the Programme National Hautes Energies; that support is acknowledged here. The authors wish to acknowledge the seminal role played by our late colleague, O. de Jager, in opening the VHE pulsar window of research.

Author information

Authors and Affiliations

Consortia

Contributions

A.D.-A. led the H.E.S.S. project of the Vela pulsar and the main H.E.S.S. data analysis. G. Giavitto and L.M. performed the cross-check analyses used in this study along with V.M. The statistical assessment of the results relies on MC simulations performed by M.S.-J. A.D.-A. developed the interpretation and modelling together with B.R., M.S.-J., T. Tavernier, E.d.O.W. and C.V. The manuscript was prepared by A.D.-A., B.R., E.d.O.W., C.V. and L.M. T.L. and M. Böttcher supervised the review and discussion of the manuscript among the coauthors. The sketch in Fig. 4 was designed by H.P. together with E.d.O.W., based on an initial proposal by M.S.-J. and A.D.-A. The other coauthors contributed by preparing and obtaining the observations; by calibrating the data, simulating showers and developing analyses; by developing, constructing, operating and maintaining telescopes, cameras and calibration devices; and by conducting data handling, data reduction and data analysis. The ephemeris used for phase-folding the H.E.S.S. data was provided by M.K., S.J., R.M.S. and D.A. Smith. All authors meet the journal’s authorship criteria and have reviewed, discussed and commented on the results and the manuscript.

Corresponding authors

Correspondence to A. Djannati-Ataï, E. de Ona Wilhelmi, B. Rudak or C. Venter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Giovanni Ceribella, Constantinos Kalapotharakos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, References and Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The H.E.S.S. Collaboration et al.. Discovery of a radiation component from the Vela pulsar reaching 20 teraelectronvolts. Nat Astron 7, 1341–1350 (2023). https://doi.org/10.1038/s41550-023-02052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02052-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing