Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-lived volcanic resurfacing of Venus driven by early collisions

Abstract

The geodynamics of Earth and Venus operate in strikingly distinct ways, in spite of their similar size and bulk density, resulting in Venus’s absence of plate tectonics and young surface age (0.2–1 billion years). Venus’s geophysical models have sought to explain these observations by invoking either stagnant lid tectonics and protracted volcanic resurfacing, or by a late episode of catastrophic mantle overturn. These scenarios, however, are sensitive to poorly understood internal initial conditions and rheological properties, and their ability to explain Venus’s young surface age remains unclear. Here we show that long-lived volcanism, driven by early, energetic collisions on Venus, offers an explanation of its young surface age with stagnant lid tectonics. This volcanic activity is fuelled by a superheated core, resulting in vigorous internal melting regardless of initial conditions. Furthermore, we find that energetic impacts stir Venus’s core, suggesting that its low magnetic field is not likely to be caused by a compositionally stratified core, as previously proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact-generated melt on Venus.
Fig. 2: Venus’s thermal evolution from an energetic collision.
Fig. 3: Mollweide projection of Venus’s postimpact temperature.
Fig. 4: Venus’s thermal evolution modelling with and without an energetic collision.

Similar content being viewed by others

Data availability

All data are available in the paper, figures or Supplementary Information. Inputs for numerical simulations are described in the text, and available from the corresponding author upon request.

References

  1. Nesvorný, D., Roig, F. V. & Deienno, R. The role of early giant-planet instability in terrestrial planet formation. AJ 161, 50 (2021).

    Article  ADS  Google Scholar 

  2. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron 6, 357–366 (2022).

    Article  ADS  Google Scholar 

  3. Emsenhuber, A., Asphaug, E., Cambioni, S., Gabriel, T. S. & Schwartz, S. R. Collision chains among the terrestrial planets. II. An asymmetry between Earth and Venus. Planet. Sci. J. 2, 199 (2021).

    Article  Google Scholar 

  4. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  ADS  Google Scholar 

  5. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  ADS  Google Scholar 

  6. Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).

    Article  ADS  Google Scholar 

  7. Marchi, S., Walker, R. J. & Canup, R. M. A compositionally heterogeneous martian mantle due to late accretion. Sci. Adv. 6, eaay2338 (2020).

    Article  ADS  Google Scholar 

  8. Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).

    Article  ADS  Google Scholar 

  9. Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. 117, E12003 (2012).

    ADS  Google Scholar 

  10. Nakajima, M. et al. Scaling laws for the geometry of an impact-induced magma ocean. Earth Planet. Sci. Lett. 568, 116983 (2021).

    Article  Google Scholar 

  11. Gillmann, C., Golabek, G. J. & Tackley, P. J. Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016).

    Article  ADS  Google Scholar 

  12. Arkani-Hames, J. & Olson, P. Giant impacts, core stratification, and failure of the Martian dynamo. J. Geophys. Res. 115, E07012 (2010).

    ADS  Google Scholar 

  13. Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res. Solid Earth 124, 3399–3419 (2019).

    Article  ADS  Google Scholar 

  14. Miyazaki, Y. & Korenaga, J. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature 603, 86–90 (2022).

    Article  ADS  Google Scholar 

  15. O’Rourke, J. G. & Korenaga, J. Thermal evolution of Venus with argon degassing. Icarus 260, 128–140 (2015).

    Article  ADS  Google Scholar 

  16. Schubert, G., Turcotte, D. L., & Olson, P. Mantle Convection in Earth and Planets (Cambridge Univ. Press, 2001).

  17. Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).

    Article  ADS  MATH  Google Scholar 

  18. Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  ADS  Google Scholar 

  19. Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    Article  ADS  Google Scholar 

  20. Korenaga, J. Plate tectonics and surface environment: role of the oceanic upper mantle. Earth-Sci. Rev. 205, 103185 (2020).

    Article  Google Scholar 

  21. Grimm, R. E. & Hess, P. C. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 1205–1244 (Univ. Arizona Press, 1997).

  22. Herrick, R. R. & Sharpton, V. L. Implications from stereo-derived topography of Venusian impact craters. J. Geophys. Res. 105, 20245–20262 (2000).

    Article  ADS  Google Scholar 

  23. Romeo, I. & Turcotte, D. L. Resurfacing on Venus. Planet. Space Sci. 58, 1374–1380 (2010).

    Article  ADS  Google Scholar 

  24. Strom, R., Schaber, G. & Dawson, D. The global resurfacing of Venus. J. Geophys. Res. 99, 10899–10926 (1994).

    Article  ADS  Google Scholar 

  25. Le Feuvre, M. & Wieczorek, M. Nonuniform cratering of the terrestrial planets. Icarus 197, 291–306 (2008).

    Article  ADS  Google Scholar 

  26. Bottke, W. F. et al. On asteroid impacts, crater scaling laws, and a proposed younger surface age for Venus. In 47th Lunar and Planetary Science Conference (2016).

  27. Turcotte, D. L. An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17061–17068 (1993).

    Article  ADS  Google Scholar 

  28. Moresi, L. & Solomatov, V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669–682 (1998).

    Article  ADS  Google Scholar 

  29. Reese, C. C., Solomatov, V. S. & Moresi, L.-N. Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus 139, 67–88 (1999).

    Article  ADS  Google Scholar 

  30. Parmentier, E. M. & Hess, P. C. Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992).

    Article  ADS  Google Scholar 

  31. Smrekar, S. E., Davaille, A. & Sotin, C. Venus interior structure and dynamics. Space Sci. Rev. 214, 88 (2018).

    Article  ADS  Google Scholar 

  32. Jacobson, S. A., Rubie, D. C., Hernlund, J., Morbidelli, A. & Nakajima, M. Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017).

    Article  ADS  Google Scholar 

  33. Stevenson, D. J., Spohn, T. & Schubert, G. Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983).

    Article  ADS  Google Scholar 

  34. O’Rourke, J. G., Gillmann, C. & Tackley, P. J. Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth Planet. Sci. Lett. 502, 46–56 (2018).

    Article  ADS  Google Scholar 

  35. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    Article  ADS  Google Scholar 

  36. Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    Article  ADS  Google Scholar 

  37. Thompson, S. L. ANEOS Analytic Equations of State for Shock Physics Codes Input Manual. No. SAND-89-2951 (Sandia National Labs., 1990).

  38. Marcus, R. A., Stewart, S. T., Sasselov, D. & Hernquist, L. Collisional stripping and disruption of super-Earths. Astrophys. J. 700, L118 (2009).

    Article  ADS  Google Scholar 

  39. Marcus, R. A. The Role of Giant Impacts in Planet Formation and Internal Structure. PhD thesis, Harvard Univ. (2011).

  40. Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  ADS  Google Scholar 

  41. Melosh, H. J. Why the Moon is so like the Earth. Nat. Geosci. 12, 402–403 (2019).

    Article  ADS  Google Scholar 

  42. Hosono, N., Karato, S. I., Makino, J. & Saitoh, T. R. Terrestrial magma ocean origin of the Moon. Nat. Geosci. 12, 418–423 (2019).

    Article  ADS  Google Scholar 

  43. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  ADS  Google Scholar 

  44. Rufu, R., Aharonson, O. & Perets, H. B. A multiple-impact origin for the Moon. Nat. Geosci. 10, 89–94 (2017).

    Article  ADS  Google Scholar 

  45. Alemi, A. & Stevenson, D. Why Venus has no moon. In AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 38 (2006).

  46. Gold, T. & Soter, S. Atmospheric tides and the resonant rotation of Venus. Icarus 11, 356–366 (1969).

    Article  ADS  Google Scholar 

  47. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993).

    Article  ADS  Google Scholar 

  48. Correia, A. & Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001).

    Article  ADS  Google Scholar 

  49. Correia, A. C. & Laskar, J. Long-term evolution of the spin of Venus: II. Numerical simulations. Icarus 163, 24–45 (2003).

    Article  ADS  Google Scholar 

  50. Zahnle, K. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).

    Article  ADS  Google Scholar 

  51. Fuller, J., Luan, J. & Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458, 3867–3879 (2016).

    Article  ADS  Google Scholar 

  52. Salmon, J. & Canup, R. M. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012).

    Article  ADS  Google Scholar 

  53. Hesselbrock, A. J. & Minton, D. A. Three dynamical evolution regimes for coupled ring-satellite systems and implications for the formation of the Uranian Satellite Miranda. Astron. J. 157, 30 (2019).

    Article  ADS  Google Scholar 

  54. Fraeman, A. A. & Korenaga, J. The influence of mantle melting on the evolution of Mars. Icarus 210, 43–57 (2010).

    Article  ADS  Google Scholar 

  55. O’Rourke, J. G. & Korenaga, J. Terrestrial planet evolution in the stagnant-lid regime: size effects and the formation of self-destabilizing crust. Icarus 221, 1043–1060 (2012).

    Article  ADS  Google Scholar 

  56. Davaille, A. & Jaupart, C. Onset of thermal convection in fluids with temperature-dependent viscosity: application to the oceanic mantle. J. Geophys. Res. 99, 19853–19866 (1994).

    Article  ADS  Google Scholar 

  57. Solomatov, V. S. & Moresi, L.-N. Scaling of time-dependent stagnant lid convection: application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res. 105, 21795–21817 (2000).

    Article  ADS  Google Scholar 

  58. Watts, A. B. & Zhong, S. Observations of flexure and the rheology of oceanic lithosphere. Geophys. J. Int. 142, 855–875 (2000).

    Article  ADS  Google Scholar 

  59. Forte, A. M., Simmons, N. A. & Grand, S. P. in Treatise on Geophysics 2nd edn, Vol. 1 (ed. Schubert, G.) 853–907 (Elsevier, 2015).

  60. Dobson, D. P., Dohmen, R. & Widenbeck, M. Self-diffusion of oxygen and silicon in MgSiO3 perovskite. Earth Planet. Sci. Lett. 270, 125–129 (2008).

    Article  ADS  Google Scholar 

  61. Farnetani, C. G. Excess temperature of mantle plumes: the role of chemical stratification across D". Geophys. Res. Lett. 24, 1583–1586 (1997).

    Article  ADS  Google Scholar 

  62. Leng, W. & S. Zhong, S. Controls on plume heat flux and plume excess temperature. J. Geophys. Res. 113, B04408 (2008).

    ADS  Google Scholar 

  63. Stolper, E., Walker, D., Hager, B. H. & Hays, J. F. Melt segregation from partially molten source regions: the importance of melt density and source region size. J. Geophys. Res. 86, 6261–6271 (1981).

    Article  ADS  Google Scholar 

  64. James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets 118, 859–875 (2013).

    Article  ADS  Google Scholar 

  65. Plesa, A.-C., Tosi, N., Grott, M. & Breuer, D. Thermal evolution and Urey ratio of Mars. J. Geophys. Res. Planets 120, 995–1010 (2015).

    Article  ADS  Google Scholar 

  66. Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Article  ADS  Google Scholar 

  67. Miyazaki, Y. & Korenaga, J. Inefficient water degassing inhibits ocean formation on rocky planets: an insight from self-consistent mantle degassing models. Astrobiology 22, 713–734 (2022).

    Article  ADS  Google Scholar 

  68. Phillips, R. J., Bullock, M. A. & Hauck, S. A. Climate and interior coupled evolution of Venus. Geophys. Res. Lett. 28, 1779–1782 (2001).

    Article  ADS  Google Scholar 

  69. Gillman, C. & Tackley, P. J. Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res. Planets 119, 1189–1217 (2014).

    Article  ADS  Google Scholar 

  70. Breuer, D. & Moore, W. B. in Treatise on Geophysics 2nd edn, Vol. 10 (ed. Schubert, G.) 255–305 (Elsevier, 2015).

  71. Wolstencroft, M. & Davies, J. H. Influence of the ringwoodite–perovskite transition on mantle convection in spherical geometry as a function of {Clapeyron} slope and {Rayleigh} number. Solid Earth 2, 315–326 (2011).

    Article  ADS  Google Scholar 

  72. Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. 107, B2078 (2002).

    ADS  Google Scholar 

  73. Fei, Y. et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. 109, B02305 (2004).

    ADS  Google Scholar 

  74. Ohtani, E. & Litasov, K. D. The effect of water on mantle phase transitions. Rev. Mineral. Geochem. 62, 397–420 (2006).

    Article  Google Scholar 

  75. Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Sci. Adv. 1, e1500815 (2015).

    Article  ADS  Google Scholar 

  76. Rolf, T., Steinberger, B., Sruthi, U. & Werner, S. C. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus. Icarus 313, 107–123 (2018).

    Article  ADS  Google Scholar 

  77. Uppalapati, S., Rolf, T., Crameri, F. & Werner, S. C. Dynamics of lithospheric overturns and implications for Venus’s surface. J. Geophys. Res. Planets 125, e06258 (2020).

    Article  Google Scholar 

  78. Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2020).

    Article  ADS  Google Scholar 

  79. Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).

    Article  Google Scholar 

  80. Modirrousta-Galian, D. & Korenaga, J. The three regimes of atmospheric evaporation for super-Earths and sub-Neptunes. Astrophys. J. 943, 11 (2023).

    Article  ADS  Google Scholar 

  81. Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic‐squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth‐like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).

    Article  Google Scholar 

  82. Korenaga, J. On the likelihood of plate tectonics on super-Earths: does size matter? Astrophys. J. 725, L43–L46 (2010).

    Article  ADS  Google Scholar 

  83. Davaille, A., Smrekar, S. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).

    Article  ADS  Google Scholar 

  84. Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 13, 547–554 (2020).

    Article  ADS  Google Scholar 

  85. Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69, 101–125 (2009).

    Article  Google Scholar 

  86. von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten, D. M. et al) 299–430 (Univ. Arizona Press, 1983).

Download references

Acknowledgements

S.M. acknowledges internal support from the Southwest Research Institute and D. Nesvorný for providing impact velocity files from numerical integrations. R.R. is supported by NASA through a NASA Hubble Fellowship grant no. HST-HF2-51491 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555.

Author information

Authors and Affiliations

Authors

Contributions

S.M. conceived the work and analysed the SPH simulations. R.R. ran the SPH simulations. J.K. ran and analysed the geophysical calculations. All authors contributed to the interpretation of the results and writing of the paper.

Corresponding author

Correspondence to Simone Marchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and their captions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat Astron 7, 1180–1187 (2023). https://doi.org/10.1038/s41550-023-02037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02037-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing