Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The formation of merging black holes with masses beyond 30 M at solar metallicity

Abstract

Gravitational-wave astronomy has revealed a population of stellar-mass black holes more massive than observed previously by other means. The maximum mass of black holes formed in isolated binaries is determined by stellar winds, mixing processes and interactions between the binary components. We consider the impact that fully self-consistent, detailed stellar-structure and binary-evolution calculations have on the population synthesis of black-hole binaries at solar metallicity. We find a qualitatively different picture from previous studies employing rapid population-synthesis techniques. Merging binary black holes form with a non-negligible rate (\(\sim 4\times 1{0}^{-7}\,{M}_{\odot }^{-1}\)) and their progenitor stars with initial masses 50 M do not expand to supergiant radii, thereby largely avoiding substantial dust-driven or luminous blue variable winds. The progenitor stars lose less mass in winds, which results in black holes as massive as ~30 M, and approximately half avoid a mass-transfer episode before forming the first-born black hole. Binaries with initial periods of a few days, some of which may undergo Roche-lobe overflow mass transfer, result in mildly spinning first-born black holes, χBH1 0.2, assuming efficient angular-momentum transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hertzsprung–Russell diagram for stars with masses between 20 M and 150 M.
Fig. 2: Stellar-wind mass-loss prescriptions.
Fig. 3: Black hole mass from single- and binary-stellar evolution for a given ZAMS stellar mass at Z.
Fig. 4: Intrinsic and detectable merging binary black hole mass and spin distributions at Z.

Similar content being viewed by others

Data availability

The source and Supplementary Data used in the main manuscript and Supplementary Discussion are publicly available on Zenodo65. The dataset includes all single-stellar model variations discussed in the manuscript and the BBH population synthesis model that can be used to reproduce our results. Additionally, POSYDON v.1.0 single and binary grid datasets can be found on Zenodo66.

Code availability

The POSYDON v.1.0 software used to generate the BBH population synthesis and single-stellar models is open source and is available on GitHub67. Additionally, the software used to compute double compact object merger rates and to generate the intrinsic and detectable BBH observable distributions in Fig. 4 is available on GitHub68.

References

  1. Corral-Santana, J. M. et al. BlackCAT: a catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys. 587, A61 (2016).

    Google Scholar 

  2. Tetarenko, B. E., Sivakoff, G. R., Heinke, C. O. & Gladstone, J. C. WATCHDOG: a comprehensive all-sky database of galactic black hole X-ray binaries. Astrophys. J. Suppl. Ser. 222, 15 (2016).

    ADS  Google Scholar 

  3. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Google Scholar 

  4. Abbott, R. et al. GWTC-2.1: deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Preprint at https://doi.org/10.48550/arXiv.2108.01045 (2021).

  5. Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Preprint at https://doi.org/10.48550/arXiv.2111.03606 (2021).

  6. Giesers, B. et al. A stellar census in globular clusters with MUSE: binaries in NGC 3201. Astron. Astrophys. 632, A3 (2019).

    Google Scholar 

  7. El-Badry, K. et al. A Sun-like star orbiting a black hole. Mon. Not. R. Astron. Soc. 518, 1057–1085 (2023).

    ADS  Google Scholar 

  8. Miller-Jones, J. C. A. et al. Cygnus X-1 contains a 21-solar mass black hole—implications for massive star winds. Science 371, 1046–1049 (2021).

    ADS  Google Scholar 

  9. Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016).

    ADS  Google Scholar 

  10. Abbott, B. P. et al. Astrophysical Implications of the binary black-hole merger GW150914. Astrophys. J. Lett. 818, L22 (2016).

    ADS  Google Scholar 

  11. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  12. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    ADS  Google Scholar 

  13. Nugis, T. & Lamers, H. J. G. L. M. Mass-loss rates of Wolf–Rayet stars as a function of stellar parameters. Astron. Astrophys. 360, 227–244 (2000).

    ADS  Google Scholar 

  14. Meynet, G., Maeder, A., Schaller, G., Schaerer, D. & Charbonnel, C. Grids of massive stars with high mass loss rates. V. From 12 to 120 M at Z=0.001, 0.004, 0.008, 0.020 and 0.040. Astron. Astrophys. Suppl. 103, 97–105 (1994).

    ADS  Google Scholar 

  15. Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).

    ADS  Google Scholar 

  16. Renzo, M., Ott, C. D., Shore, S. N. & de Mink, S. E. Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars. Astron. Astrophys. 603, A118 (2017).

    Google Scholar 

  17. Belczynski, K. et al. The formation of a 70 M black hole at high metallicity. Astrophys. J. 890, 113 (2020).

    ADS  Google Scholar 

  18. Vink, J. S. Theory and diagnostics of hot star mass loss. Annu. Rev. Astron. Astrophys. 60, 203–246 (2022).

    ADS  Google Scholar 

  19. Chiosi, C. & Maeder, A. The evolution of massive stars with mass loss. Annu. Rev. Astron. Astrophys. 24, 329–375 (1986).

    ADS  Google Scholar 

  20. Maeder, A. & Meynet, G. Grids of evolutionary models of massive stars with mass loss and overshooting – properties of Wolf-Rayet stars sensitive to overshooting. Astron. Astrophys. 182, 243–263 (1987).

    ADS  Google Scholar 

  21. Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    ADS  Google Scholar 

  22. Breivik, K. et al. COSMIC variance in binary population synthesis. Astrophys. J. 898, 71 (2020).

    ADS  Google Scholar 

  23. Riley, J. et al. Rapid stellar and binary population synthesis with COMPAS. Astrophys. J. Suppl. Ser. 258, 34 (2022).

    ADS  Google Scholar 

  24. Belczynski, K., Kalogera, V. & Bulik, T. A comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. Astrophys. J. 572, 407–431 (2002).

    ADS  Google Scholar 

  25. Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 315, 543–569 (2000).

    ADS  Google Scholar 

  26. Pols, O. R., Schröder, K.-P., Hurley, J. R., Tout, C. A. & Eggleton, P. P. Stellar evolution models for Z = 0.0001 to 0.03. Mon. Not. R. Astron. Soc. 298, 525–536 (1998).

    ADS  Google Scholar 

  27. Agrawal, P., Hurley, J., Stevenson, S., Szécsi, D. & Flynn, C. The fates of massive stars: exploring uncertainties in stellar evolution with METISSE. Mon. Not. R. Astron. Soc. 497, 4549–4564 (2020).

    ADS  Google Scholar 

  28. Romagnolo, A. et al. The role of stellar expansion on the formation of gravitational wave sources. Preprint at https://doi.org/10.48550/arXiv.2211.15800 (2022).

  29. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    ADS  Google Scholar 

  30. Fragos, T. et al. POSYDON: a general-purpose population synthesis code with detailed binary-evolution simulations. Astrophys. J. Suppl. Ser. 264, 45 (2023).

    ADS  Google Scholar 

  31. Dominik, M. et al. Double compact objects. II. Cosmological merger rates. Astrophys. J. 779, 72 (2013).

    ADS  Google Scholar 

  32. Neijssel, C. J. et al. The effect of the metallicity-specific star formation history on double compact object mergers. Mon. Not. R. Astron. Soc. 490, 3740–3759 (2019).

    ADS  Google Scholar 

  33. Broekgaarden, F. S. et al. Impact of massive binary star and cosmic evolution on gravitational wave observations - II. Double compact object rates and properties. Mon. Not. R. Astron. Soc. 516, 5737–5761 (2022).

    ADS  Google Scholar 

  34. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).

    Google Scholar 

  35. Choi, J. et al. Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    ADS  Google Scholar 

  36. Smith, N. Luminous blue variables and the fates of very massive stars. Philos. Trans. R. Soc. A 375, 20160268 (2017).

    ADS  Google Scholar 

  37. Patton, R. A. & Sukhbold, T. Towards a realistic explosion landscape for binary population synthesis. Mon. Not. R. Astron. Soc. 499, 2803–2816 (2020).

    ADS  Google Scholar 

  38. Dorozsmai, A. & Toonen, S. Importance of stable mass transfer and stellar winds for the formation of gravitational wave sources. Preprint at https://doi.org/10.48550/arXiv.2207.08837 (2022).

  39. van den Heuvel, E. P. J., Portegies Zwart, S. F. & de Mink, S. E. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer. Mon. Not. R. Astron. Soc. 471, 4256–4264 (2017).

    ADS  Google Scholar 

  40. Bavera, S. S. et al. The origin of spin in binary black holes. Predicting the distributions of the main observables of Advanced LIGO. Astron. Astrophys. 635, A97 (2020).

    Google Scholar 

  41. Bavera, S. S. et al. The impact of mass-transfer physics on the observable properties of field binary black hole populations. Astron. Astrophys. 647, A153 (2021).

    Google Scholar 

  42. Nelson, D. et al. The illustris simulation: public data release. Astron. Comput. 13, 12–37 (2015).

    ADS  Google Scholar 

  43. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).

    ADS  Google Scholar 

  44. Bavera, S. S. et al. Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts. Astron. Astrophys. 657, L8 (2022).

    ADS  Google Scholar 

  45. Graham, J. F., Schady, P. & Fruchter, A. S. A surprising lack of LGRB metallicity evolution with redshift. Preprint at https://doi.org/10.48550/arXiv.1904.02673 (2019).

  46. Farr, W. M. et al. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature 548, 426–429 (2017).

    ADS  Google Scholar 

  47. Misra, D. et al. X-ray luminosity function of high-mass X-ray binaries: studying the signatures of different physical processes using detailed binary evolution calculations. Astron. Astrophys. 672, A99 (2023).

    Google Scholar 

  48. Rout, S. K., Vadawale, S., Garćia, J. & Connors, R. Revisiting the galactic Xray binary MAXI J1631-479: implications for high inclination and a massive black hole. Astrophys. J. 944, 68 (2023).

    ADS  Google Scholar 

  49. Breivik, K., Chatterjee, S. & Larson, S. L. Revealing black holes with Gaia. Astrophys. J. Lett. 850, L13 (2017).

    ADS  Google Scholar 

  50. Callister, T. A., Miller, S. J., Chatziioannou, K. & Farr, W. M. No vvidence that the majority of black holes in binaries have zero spin. Astrophys. J. Lett. 937, L13 (2022).

    ADS  Google Scholar 

  51. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    ADS  Google Scholar 

  52. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    ADS  Google Scholar 

  53. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    ADS  Google Scholar 

  54. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    ADS  Google Scholar 

  55. de Jager, C., Nieuwenhuijzen, H. & van der Hucht, K. A. Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. Suppl. 72, 259–289 (1988).

    ADS  Google Scholar 

  56. Humphreys, R. M. & Davidson, K. The luminous blue variables: astrophysical geysers. Publ. Astron. Soc. Pac. 106, 1025 (1994).

    ADS  Google Scholar 

  57. Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010).

    ADS  Google Scholar 

  58. Fryer, C. L. et al. Compact remnant mass function: dependence on the explosion mechanism and metallicity. Astrophys. J. 749, 91 (2012).

    ADS  Google Scholar 

  59. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 21, 3 (2018).

    ADS  Google Scholar 

  60. Barrett, J. W. et al. Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Mon. Not. R. Astron. Soc. 477, 4685–4695 (2018).

    ADS  Google Scholar 

  61. Ng, K. K. Y. et al. Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases. Phys. Rev. D 98, 083007 (2018).

    ADS  Google Scholar 

  62. LIGO Algorithm Library – LALSuite (LIGO Scientific Collaboration, 2018).

  63. Finn, L. S. & Chernoff, D. F. Observing binary inspiral in gravitational radiation: one interferometer. Phys. Rev. D 47, 2198–2219 (1993).

    ADS  Google Scholar 

  64. Aasi, J. et al. Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Phys. Rev. D 93, 042006 (2016).

    ADS  Google Scholar 

  65. Bavera, S. S. Dataset associated to the publication NATASTRON- 22125961A arXiv:2212.10924. Zenodo https://doi.org/10.5281/zenodo.7965618 (2023).

  66. Fragos, T. Posydon data. Zenodohttps://doi.org/10.5281/zenodo.6655751 (2022).

  67. POSYDON Collaboration. Posydon. (GitHub, accessed 6 Febuary 2023) https://github.com/POSYDON-code/POSYDON

  68. Bavera, S. S. Binary black hole merger rates. (GitHub, accessed 24 May 2023) https://github.com/ssbvr/BBH_merger_rates

  69. Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  70. Price-Whelan, A. M. et al. The astropy project: building an open-science project and status of the v2. 0 core package. Astron. J. 156, 123 (2018).

    ADS  Google Scholar 

  71. Pérez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

    Google Scholar 

  72. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    ADS  Google Scholar 

  73. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.7344967 (The pandas development team, 2022).

  74. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Google Scholar 

Download references

Acknowledgements

The POSYDON project is supported primarily by two sources: the Swiss National Science Foundation Professorship grant (PI Fragos, project numbers PP00P2_176868 and PP00P2_211006) and the Gordon and Betty Moore Foundation (PI Kalogera, grant award GBMF8477). S.S.B., T.F., D.M. and E.Z. were supported by the project PP00P2_176868 and S.S.B., T.F., M.K. and Z.X. were supported by the project number PP00P2_211006. Z.X. was also supported by the Chinese Scholarship Council (CSC). E.Z. acknowledges funding support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 772086). V.K., A.D., K.A.R., P.M.S. and M.S. were supported by the project number GBMF8477. C.P.L.B. acknowledges support from the University of Glasgow. K.K. acknowledges support from the Federal Commission for Scholarships for Foreign Students for the Swiss Government Excellence Scholarship (ESKAS no. 2021.0277) and the Spanish State Research Agency, through the María de Maeztu Program for Centers and Units of Excellence in R&D, no. CEX2020-001058-M. K.A.R. also thanks the LSSTC Data Science Fellowship Program, funded by LSSTC, NSF Cybertraining grant no. 1829740, the Brinson Foundation and the Moore Foundation; their participation in the programme has benefited this work. The computations were performed at Northwestern University on the Trident computer cluster (funded by the GBMF8477 award) and at the University of Geneva on the Yggdrasil computer cluster. This research was partly supported by the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University, jointly supported by the Office of the Provost, the Office for Research and Northwestern University Information Technology. All figures were made with the open-source Python module Matplotlib69. This research used the Python modules Astropy70, iPython71, Numpy72, Pandas73 and SciPy74.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper. S.S.B. led the writing with substantial contributions from T.F., E.Z., J.J.A., V.K., C.P.L.B. and M.K. The results presented in this study were obtained using the open-source software POSYDON, which was developed by S.S.B., T.F., J.J.A., E.Z., A.D., K.K., D.M., K.A.R., P.M.S., M.S. and Z.X.

Corresponding author

Correspondence to Simone S. Bavera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavera, S.S., Fragos, T., Zapartas, E. et al. The formation of merging black holes with masses beyond 30 M at solar metallicity. Nat Astron 7, 1090–1097 (2023). https://doi.org/10.1038/s41550-023-02018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02018-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing