Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for auroral influence on Jupiter’s nitrogen and oxygen chemistry revealed by ALMA

Abstract

The localized delivery of new long-lived species to Jupiter’s stratosphere by comet Shoemaker–Levy 9 in 1994 opened a window to constrain Jovian chemistry and dynamics by monitoring the evolution of their vertical and horizontal distributions. However, the spatial distributions of CO and HCN, two of these long-lived species, had never been jointly observed at high latitudinal resolution. Atacama large millimeter/submillimeter array observations of HCN and CO in March 2017 show that CO was meridionally uniform and restricted to pressures lower than 3 ± 1 mbar. HCN shared a similar vertical distribution in the low- to mid-latitudes, but was depleted at pressures between \({2}_{-1}^{+2}\) and \({0.04}_{-0.03}^{+0.07}\) mbar in the aurora and surrounding regions, resulting in a drop by two orders of magnitude in column density. We propose that heterogeneous chemistry bonds HCN on large aurora-produced aerosols at these pressures in the Jovian auroral regions causing the observed depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample of HCN and CO spectra observed with ALMA in Jupiter on 22 March 2017.
Fig. 2: HCN and CO volume mixing ratio vertical profiles in Jupiter’s stratosphere.
Fig. 3: CO (top) and HCN (bottom) column densities as a function of planetocentric latitude at the longitudes of the two observed limbs.
Fig. 4: Polar projections of the HCN column density.

Similar content being viewed by others

Data availability

Observation data can be obtained from the ALMA archive. Temperature profiles, HCN and CO limb spectra and retrieved vertical profiles can be obtained from the following Zenodo repository: https://doi.org/10.5281/zenodo.7928701.

Code availability

Software used for the retrievals is available upon request by contacting the corresponding author.

References

  1. Moses, J. I. et al. Photochemistry and diffusion in Jupiter’s stratosphere: constraints from ISO observations and comparisons with other planets. J. Geophys. Res. 110, E08001 (2005).

    ADS  Google Scholar 

  2. Feuchtgruber, H. et al. External supply of oxygen to the atmospheres of the giant planets. Nature 389, 159–162 (1997).

    ADS  Google Scholar 

  3. Hue, V., Hersant, F., Cavalié, T., Dobrijevic, M. & Sinclair, J. A. Photochemistry, mixing and transport in Jupiter’s stratosphere constrained by Cassini. Icarus 307, 106–123 (2018).

    ADS  Google Scholar 

  4. Harrington, J. et al. in Jupiter. The Planet, Satellites and Magnetosphere Vol. 1, 159–184 (eds Bagenal, F. et al.) (Cambridge Univ. Press, 2004).

  5. Orton, G. et al. Collision of comet Shoemaker-Levy 9 with Jupiter observed by the NASA Infrared Telescope Facility. Science 267, 1277–1282 (1995).

    ADS  Google Scholar 

  6. Moreno, R. et al. Jovian stratospheric temperature during the two months following the impacts of comet Shoemaker-Levy 9. Planet. Space Sci. 49, 473–486 (2001).

    ADS  Google Scholar 

  7. Sánchez-Lavega, A. et al. Motions of the SL9 impact clouds. Geophys. Res. Lett. 22, 1761–1764 (1995).

    ADS  Google Scholar 

  8. Hammel, H. B. et al. HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy9. Science 267, 1288–1296 (1995).

    ADS  Google Scholar 

  9. Lellouch, E. et al. Chemical response of Jupiter’s atmosphere following the impact of comet Shoemaker-Levy 9. Nature 373, 592–595 (1995).

    ADS  Google Scholar 

  10. Marten, A. et al. The collision of comet Shoemaker-Levy 9 with Jupiter: detection and evolution of HCN in the stratosphere of the planet. Geophys. Res. Lett. 22, 1589–1592 (1995).

    ADS  Google Scholar 

  11. Bjoraker, G. L., Stolovy, S. R., Herter, T. L., Gull, G. E. & Pirger, B. E. Detection of water after the collision of fragments G and K of comet Shoemaker-Levy 9 with Jupiter. Icarus 121, 411–421 (1996).

    ADS  Google Scholar 

  12. Zahnle, K. Dynamics and chemistry of SL9 plumes. In The Collision of Comet Shoemaker-Levy 9 and Jupiter (eds Noll, K. S. et al.) 183–212 (Cambridge University Press, 1996).

  13. Lellouch, E. et al. The origin of water vapor and carbon dioxide in Jupiter’s stratosphere. Icarus 159, 112–131 (2002).

    ADS  Google Scholar 

  14. Lellouch, E. et al. Carbon monoxide in Jupiter after the impact of comet Shoemaker-Levy 9. Planet. Space Sci. 45, 1203–1212 (1997).

    ADS  Google Scholar 

  15. Moreno, R., Marten, A., Matthews, H. E. & Biraud, Y. Long-term evolution of CO, CS and HCN in Jupiter after the impacts of comet Shoemaker-Levy 9. Planet. Space Sci. 51, 591–611 (2003).

    ADS  Google Scholar 

  16. Griffith, C. A. et al. Thermal infrared imaging spectroscopy of Shoemaker-Levy 9 impact sites: spatial and vertical distributions of NH3, C2H4, and 10-µm dust emission. Icarus 128, 275–293 (1997).

    ADS  Google Scholar 

  17. Griffith, C. A. et al. Meridional transport of HCN from SL9 impacts on Jupiter. Icarus 170, 58–69 (2004).

    ADS  Google Scholar 

  18. Lellouch, E. et al. On the HCN and CO2 abundance and distribution in Jupiter’s stratosphere. Icarus 184, 478–497 (2006).

    ADS  Google Scholar 

  19. Cavalié, T. et al. Observation of water vapor in the stratosphere of Jupiter with the Odin space telescope. Planet. Space Sci. 56, 1573–1584 (2008).

    ADS  Google Scholar 

  20. Benmahi, B. et al. Monitoring of the evolution of H2O vapor in the stratosphere of Jupiter over an 18-year period with the Odin space telescope. Astron. Astrophys. 641, A140 (2020).

    Google Scholar 

  21. Cavalié, T. et al. First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter. Astron. Astrophys. 647, L8 (2021).

    ADS  Google Scholar 

  22. Cosentino, R. G. et al. New observations and modeling of Jupiter’s quasi-quadrennial oscillation. J. Geophys. Res. Planets 122, 2719–2744 (2017).

  23. Sinclair, J. A. et al. A high spatial and spectral resolution study of Jupiter’s mid-infrared auroral emissions during a solar wind compression. Planet. Sci. J. 4, 76 (2023).

    Google Scholar 

  24. Clarke, J. T. et al. Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114, A05210 (2009).

    ADS  Google Scholar 

  25. Perry, J. J., Kim, Y. H., Fox, J. L. & Porter, H. S. Chemistry of the Jovian auroral ionosphere. J. Geophys. Res. 104, 16541–16565 (1999).

    ADS  Google Scholar 

  26. Gérard, J.-C. et al. Mapping the electorn energy in Jupiter’s aurora: Hubble spectral observations. J. Geophys. Res. 119, 9072–9088 (2014).

    Google Scholar 

  27. McKay, C. P. Elemental composition, solubility, and optical properties of Titan’s organic haze. Planet. Space Sci. 44, 741–747 (1996).

    ADS  Google Scholar 

  28. Lara, L.-M., Lellouch, E. & Shematovich, V. Titan’s atmospheric haze: the case for HCN incorporation. Astron. Astrophys. 341, 312–317 (1999).

    ADS  Google Scholar 

  29. Vinatier, S. et al. Vertical abundance profiles of hydrocarbons in Titan’s atmosphere at 15 °S and 80 °N retrieved from Cassini/CIRS spectra. Icarus 188, 120–138 (2007).

    ADS  Google Scholar 

  30. Perrin, Z. et al. An atmospheric origin for HCN-derived polymers on Titan. Processes 9, 965 (2021).

    Google Scholar 

  31. Sinclair, J. A. et al. Jupiter’s auroral-related stratospheric heating and chemistry II: analysis of IRTF-TEXES spectra measured in December 2004. Icarus 300, 305–326 (2018).

    ADS  Google Scholar 

  32. Wong, A.-S., Yung, Y. L. & Friedson, A. J. Benzene and haze formation in the polar atmosphere of Jupiter. Geophys. Res. Lett. 30, 1447 (2003).

    ADS  Google Scholar 

  33. Bézard, B., Drossart, P., Encrenaz, T. & Feuchtgruber, H. Benzene on the giant planets. Icarus 154, 492–500 (2001).

    ADS  Google Scholar 

  34. Wong, A.-S., Lee, A. Y. T., Yung, Y. L. & Ajello, J. M. Jupiter: aerosol chemistry in the polar atmosphere. Astrophys. J. 534, L215–L217 (2000).

    ADS  Google Scholar 

  35. Friedson, A. J., Wong, A.-S. & Yung, Y. L. Models for polar haze formation in Jupiter’s stratosphere. Icarus 158, 389–400 (2002).

    ADS  Google Scholar 

  36. Zhang, X., West, R. A., Banfield, D. & Yung, Y. L. Stratospheric aerosols on Jupiter from Cassini observations. Icarus 226, 159–171 (2013).

    ADS  Google Scholar 

  37. Sinclair, J. A. et al. Jupiter’s auroral-related stratospheric heating and chemistry I: analysis of Voyager-IRIS and Cassini-CIRS spectra. Icarus 292, 182–207 (2017).

    ADS  Google Scholar 

  38. Waite, J. H. et al. The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007).

    ADS  Google Scholar 

  39. Dobrijevic, M., Loison, J.-C., Hickson, K. M. & Gronoff, G. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus 268, 313–339 (2016).

    ADS  Google Scholar 

  40. Cavalié, T., Lunine, J. I. & Mousis, O. A subsolar oxygen abundance or a radiative region deep in Jupiter revealed by thermochemical modeling. Nat. Astron. 7, 678–683 (2023).

    ADS  Google Scholar 

  41. Norwood, J. et al. Giant planet observations with the James Webb Space Telescope. Publ. Astron. Soc. Pac. 128, 018005 (2016).

    ADS  Google Scholar 

  42. Cavalié, T. et al. Herschel map of Saturn’s stratospheric water, delivered by the plumes of Enceladus. Astron. Astrophys. 630, A87 (2019).

    Google Scholar 

  43. Rohart, F., Derozier, D. & Legrand, J. Foreign gas relaxation of the J = 0 → 1 transition of HC15N. A study of the temperature dependance by coherent transients. J. Chem. Phys. 87, 5794–5803 (1987).

    ADS  Google Scholar 

  44. Dick, M. J., Drouin, B. J., Crawford, T. J. & Pearson, J. C. Pressure broadening of the J = 5 ← 4 transition of carbon monoxide from 17 to 200 K: a new collisional cooling experiment. J. Quant. Spectr. Rad. Transf. 110, 619–638 (2009).

    ADS  Google Scholar 

  45. Borysow, J., Trafton, L., Frommhold, L. & Birnbaum, G. Modeling of pressure-induced far-infrared absorption spectra of molecular hydrogen pairs. Astrophys. J. 296, 644–654 (1985).

    ADS  Google Scholar 

  46. Borysow, A. & Frommhold, L. Theoretical collision-induced rototranslational absorption spectra for the outer planets: H2-CH4 pairs. Astrophys. J. 304, 849–865 (1986).

    ADS  Google Scholar 

  47. Borysow, J., Frommhold, L. & Birnbaum, G. Collision-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K. Astrophys. J. 326, 509–515 (1988).

    ADS  Google Scholar 

  48. Flasar, F. M. et al. An intense stratospheric jet on Jupiter. Nature 427, 132–135 (2004).

    ADS  Google Scholar 

  49. Giles, R. S., Greathouse, T. K., Cosentino, R. G., Orton, G. S. & Lacy, J. H. Vertically-resolved observations of Jupiter’s quasi-quadrennial oscillation from 2012 to 2019. Icarus 350, 113905 (2020).

    Google Scholar 

  50. Twomey, S. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements 2nd edn (Dower Phoenix, 2002).

Download references

Acknowledgements

T.C. acknowledges funding from CNES and the Programme National de Planétologie of CNRS/INSU. This paper makes use of the following ALMA data: ADS/JAO.ALMA\#2016.1.01235.S. ALMA is a partnership of ESO (representing its member states), National Science Foundation (USA) and NINS (Japan), together with the National Research Council (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

Author information

Authors and Affiliations

Authors

Contributions

T.C. and L.R. performed the modelling and data analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to T. Cavalié.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Imke de Pater, Conor Nixon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature fields used in the abundance retrievals.

The fields at 170 W (left) and 350 W (right) correspond to the eastern and western limbs, respectively, as reconstructed from the retrievals obtained from Gemini/TEXES observations on March 14–20, 2017.

Extended Data Fig. 2 HCN (left) and CO (right) VMR vertical profile retrieval examples.

The a priori and retrieved profiles are shown in black and blue, respectively. The shaded region encompasses the range of 1-σ uncertainties due to random measurement errors. The measurement spectra (black) and fitted spectra (magenta) along with the residuals are shown as well.

Extended Data Fig. 3 HCN (left) and CO (right) vertical profiles in Jupiter’s stratosphere, as retrieved from the ALMA observations of March 22nd, 2017.

They are grouped in latitude bins, similarly to Fig. 2.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalié, T., Rezac, L., Moreno, R. et al. Evidence for auroral influence on Jupiter’s nitrogen and oxygen chemistry revealed by ALMA. Nat Astron 7, 1048–1055 (2023). https://doi.org/10.1038/s41550-023-02016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02016-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing