Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On the behaviour of spin–orbit connection of exoplanets

Abstract

Star–planet interactions play, among other things, a crucial role in planetary orbital configurations by circularizing orbits, aligning the star and planet spin and synchronizing stellar rotation with orbital motions. This is especially true for innermost giant planets, which can be schematized as binary systems with a very large mass ratio. Despite a few examples where spin–orbit synchronization has been obtained, there is no demographic study on synchronous regimes in those systems yet. Here we use a sample of 1,055 stars with innermost planet companions to show the existence of three observational loci of star–planet synchronization regimes. Two of them have dominant fractions of subsynchronous and supersynchronous star–planet systems, and a third less populated regime of potentially synchronized systems. No synchronous star–planet system with a period higher than 40 days has been detected yet. This landscape is different from eclipsing binary systems, most of which are synchronized. We suggest that planets in a stable asynchronous spin state belonging to star–planet systems in a supersynchronized regime offer the most favourable conditions for habitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The distribution of the period ratio Porb/Prot versus the orbital period Porb.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information). Source data are provided with this paper.

References

  1. Christiansen, J. L. Five thousand exoplanets at the NASA Exoplanet Archive. Nat. Astron. 6, 516–519 (2022).

    Article  ADS  Google Scholar 

  2. Borucki, W. J. et al. Kepler Planet-Detection Mission: introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  Google Scholar 

  3. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  4. Ford, E. B. Architectures of planetary systems and implications for their formation. Proc. Natl Acad. Sci. USA 111, 12616–12621 (2014).

    Article  ADS  Google Scholar 

  5. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    Article  ADS  Google Scholar 

  6. Funk, B., Wuchterl, G., Schwarz, R., Pilat-Lohinger, E. & Eggl, S. The stability of ultra-compact planetary systems. Astron. Astrophys. 516, A82 (2010).

    Article  ADS  MATH  Google Scholar 

  7. Kane, S. R., Hinkel, N. R. & Raymond, S. N. Solar System moons as analogs for compact exoplanetary systems. Astron. J. 146, 122–128 (2013).

    Article  ADS  Google Scholar 

  8. Donati, J.-F. et al. Magnetic cycles of the planet-hosting star τ Bootis. Mon. Not. R. Astron. Soc. 385, 1179–1185 (2008).

    Article  ADS  Google Scholar 

  9. Udry, S. et al. The CORALIE survey for southern extra-solar planets. VIII. The very low-mass companions of HD 141937, HD 162020, HD 168443, and HD 202206: brown dwarfs or ‘superplanets’? Astron. Astrophys. 390, 267–279 (2002).

    Article  ADS  Google Scholar 

  10. Aigrain, S. et al. Transiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2-day synchronous orbit. Astron. Astrophys. 488, L43–L46 (2008).

    Article  ADS  Google Scholar 

  11. Lanza, A. F. et al. Photospheric activity and rotation of the planet-hosting star CoRoT-4a. Astron. Astrophys. 506, 255–262 (2009).

    Article  ADS  Google Scholar 

  12. Barnes, R. Tidal locking of habitable exoplanets. Celest. Mech. Dyn. Astron. 129, 509–536 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Drake, S. A., Pravdo, S. H., Angelini, L. & Stern, R. A. Synchronization timescales for three solar-type stars that have Jupiter-mass companions in short-period orbits. Astron. J. 115, 2122–2124 (1998).

    Article  ADS  Google Scholar 

  14. Canto Martins, B. L. et al. A search for rotation periods in 1000 TESS objects of interest. Astrophys. J. Suppl. Ser. 250, 20–31 (2020).

  15. McQuillan, A., Mazeh, T. & Aigrain, S. Stellar rotation periods of the Kepler objects of interest: a dearth of close-in planets around fast rotators. Astrophys. J. Lett. 775, 11–14 (2013).

  16. Walkowicz, L. M. & Basri, G. S. Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. Mon. Not. R. Astron. Soc. 436, 1883–1895 (2013).

    Article  ADS  Google Scholar 

  17. Mazeh, T., Perets, H. B., McQuillan, A. & Goldstein E. S. Photometric amplitude distribution of stellar rotation of KOIs—indication for spin–orbit alignment of cool stars and high obliquity for hot stars. Astron. J. 801, 3–12 (2015).

  18. De Medeiros, J. R. et al. Overview of semi-sinusoidal stellar variability with the CoRoT satellite. Astron. Astrophys. 555, A63 (2013).

    Article  Google Scholar 

  19. Leão, I. C. et al. Rotation period distribution of CoRoT and Kepler Sun-like stars. Astron. Astrophys. 582, A85 (2015).

    Article  Google Scholar 

  20. Masuda, K., Petigura, E. A. & Hall, O. J. Inferring the rotation period distribution of stars from their projected rotation velocities and radii: application to late-F/early-G Kepler stars. Mon. Not. R. Astron. Soc. 510, 5623–5638 (2022).

    Article  ADS  Google Scholar 

  21. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).

    Article  Google Scholar 

  22. Gallet, F. & Bouvier, J. Improved angular momentum evolution model for solar-like stars. Astron. Astrophys. 556, A36 (2013).

    Article  ADS  Google Scholar 

  23. Gallet, F. & Bouvier, F. Improved angular momentum evolution model for solar-like stars. II. Exploring the mass dependence. Astron. Astrophys. 577, A98 (2015).

    Article  ADS  Google Scholar 

  24. Masuda, K. On the evolution of rotational modulation amplitude in solar-mass main-sequence stars. Astrophys. J. 933, 195–213 (2022).

  25. Correia, A. C. M. & Laskar, J. Tidal Evolution of Exoplanets (Univ. of Arizona Press, 2010).

  26. Jackson, B., Greenberg, R. & Barnes, R. Tidal evolution of close-in extrasolar planets. Astrophys. J. 678, 1396–1406 (2008).

  27. Lurie, J. C. et al. Tidal synchronization and differential rotation of Kepler eclipsing binaries. Astron. J. 154, 250–265 (2017).

  28. Leconte, J., Wu, H., Menou, K. & Murray, N. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015).

    Article  ADS  Google Scholar 

  29. Menou, K. Water-trapped worlds. Astrophys. J. 774, 51–58 (2013).

  30. Leconte, J. et al. 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69 (2013).

    Article  Google Scholar 

  31. Edson, A. R. et al. The carbonate–silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology 12, 562–571 (2012).

    Article  ADS  Google Scholar 

  32. Menou, K. Climate stability of habitable Earth-like planets. Earth Planet. Sci. Lett. 429, 20–24 (2015).

    Article  ADS  Google Scholar 

  33. Joshi, M. M., Haberle, R. M. & Reynolds, R. T. Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129, 450–465 (1997).

    Article  ADS  Google Scholar 

  34. Auclair-Desrotour, P. & Heng, K. Atmospheric stability and collapse on tidally locked rocky planets. Astron. Astrophys. 638, A77 (2020).

    Article  ADS  Google Scholar 

  35. Auclair-Desrotour, P. et al. The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. Astron. Astrophys. 603, 108A (2017).

    Article  Google Scholar 

  36. Correia, A. C. M. & Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001).

    Article  ADS  Google Scholar 

  37. Ahuir, J., Mathis, S. & Amard, L. Dynamical tide in stellar radiative zones. General formalism and evolution for low-mass stars. Astron. Astrophys. 651, 3–29 (2021).

    Article  ADS  Google Scholar 

  38. Teitler, S. & Königl, A. Why is there a dearth of close-in planets around fast-rotating stars? Astrophys. J. 786, 139–146 (2014).

    Article  ADS  Google Scholar 

  39. Benbakoura, M., Réville, V., Brun, A. S., Le Poncin-Lafitte, C. & Mathis, S. Evolution of star–planet systems under magnetic braking and tidal interaction. Astron. Astrophys. 621, 124–144 (2019).

    Article  Google Scholar 

  40. Pettengill, G. H. & Dyce, R. B. A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965).

    Article  ADS  Google Scholar 

  41. Showalter, M. R. & Hamilton, D. P. Resonant interactions and chaotic rotation of Pluto’s small moons. Nature 522, 45–49 (2015).

    Article  ADS  Google Scholar 

  42. Smith, B. A. et al. A new look at the Saturn system: the Voyager 2 images. Science 215, 504–537 (1982).

    Article  ADS  Google Scholar 

  43. Bryan, M. L. et al. As the worlds turn: constraining spin evolution in the planetary-mass regime. Astrophys. J. 905, 37–47 (2020).

  44. Bryan, M. L. et al. Constraints on the spin evolution of young planetary-mass companions. Nat. Astron. 2, 138–144 (2018).

    Article  ADS  Google Scholar 

  45. Snellen, I. A. G. et al. Fast spin of the young extrasolar planet β Pictoris b. Nature 509, 63–65 (2014).

    Article  ADS  Google Scholar 

  46. Kane, S. R. Atmospheric dynamics of a near tidally locked Earth-sized planet. Nat. Astron. 6, 420–427 (2022).

    Article  ADS  Google Scholar 

  47. Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac. 125, 989–999 (2013).

    Article  ADS  Google Scholar 

  48. Gordon, T. A. et al. Stellar rotation in the K2 sample: evidence for modified spin-down. Astrophys. J. 913, 70–83 (2021).

  49. Messias, Y. S. et al. A dearth of close-in planets around rapidly rotating stars or a dearth of data? Astrophys. J. Lett. 930, L23 (2022).

    Article  ADS  Google Scholar 

  50. Gaia Collaboration, Brown, A. G. A. et al. Gaia data release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

  51. Gaia Collaboration, Brown, A. G. A. et al. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  52. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 192, 3–37 (2011).

  53. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. 208, 4–45 (2013).

  54. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. 220, 15–58 (2015).

  55. Choi, J. et al. MESA Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102–149 (2016).

  56. Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J. Suppl. 222, 8–18 (2016).

  57. Davenport, J. R. A. & Covey, K. R. Rotating stars from Kepler observed with Gaia DR2. Astrophys. J. 868, 151–158 (2018).

    Article  ADS  Google Scholar 

  58. Hartman, J. D. et al. Deep MMT transit survey of the open cluster M37. III. Stellar rotation at 550 Myr. Astrophys. J. 691, 342–364 (2009).

    Article  ADS  Google Scholar 

  59. Van Saders, J. L. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529, 181–184 (2016).

    Article  ADS  Google Scholar 

  60. Masuda, K. & Hirano, T. Tidal effects on the radial velocities of V723 Mon: additional evidence for a dark 3M companion. Astrophys. J. Lett. 910, L17 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research activities of the board of observational astronomy at the Federal University of Rio Grande do Norte are supported by continuous grants from the Brazilian funding agencies CNPq and FAPERN. The present project was supported by grants from the CNPq (Universal/409345/2021-0) and CAPES (PRINT/88881.310208/2018-01). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES) – Finance Code 001. Y.S.M., M.I.A.G., R.L.G., L.F.B. and D.O.F. acknowledge CAPES graduate fellowships. CNPq research fellowships are acknowledged by B.L.C.M., I.C.L. and J.R.D.M. This work includes data collected by the TESS and Kepler missions. This research made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

Author information

Authors and Affiliations

Authors

Contributions

B.L.C.M. and J.R.D.M. led the project and wrote the manuscript. Y.S.M. and I.C.L. led the data analysis and artwork preparation. I.C.L., R.L.G., L.F.B. and D.O.F. led software preparation and data reduction. M.I.S.G. revised the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to José R. De Medeiros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and references therein.

Supplementary Table 1

The list of 1,055 selected TOI and KOI main sequence stars. The following information is listed: the TIC and KIC ID, TOI and KOI ID, status of planet detection, rotation period (Prot), planetary orbital period (Porb), planet radius, semi-major axis and stellar mass.

Supplementary Data Fig. 1

Excel data used to make Supplementary Fig. 1.

Supplementary Data Fig. 2

Excel data used to make Supplementary Fig. 2.

Supplementary Data Fig. 3

Excel data used to make Supplementary Fig. 3.

Supplementary Data Fig. 4

Excel data used to make Supplementary Fig. 4.

Supplementary Data Fig. 5

Excel data used to make Supplementary Fig. 5.

Supplementary Data Fig. 6

Excel data used to make Supplementary Fig. 6.

Source data

Source Data Fig. 1

Excel data used to make Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canto Martins, B.L., Messias, Y.S., Arruda Gonçalves, M.I. et al. On the behaviour of spin–orbit connection of exoplanets. Nat Astron 7, 900–904 (2023). https://doi.org/10.1038/s41550-023-01976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01976-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing