Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of rocky super-earths from a narrow ring of planetesimals

Subjects

Abstract

The formation of super-Earths, the most abundant planets in the Galaxy, remains elusive. These planets have masses that typically exceed that of the Earth by a factor of a few, appear to be predominantly rocky, although often surrounded by H/He atmospheres, and frequently occur in multiples. Moreover, planets that encircle the same star tend to have similar masses and radii, whereas those belonging to different systems exhibit remarkable overall diversity. Here we advance a theoretical picture for rocky planet formation that satisfies the aforementioned constraints: building upon recent work, which has demonstrated that planetesimals can form rapidly at discrete locations in the disk, we propose that super-Earths originate inside rings of silicate-rich planetesimals at approximately ~1 au. Within the context of this picture, we show that planets grow primarily through pairwise collisions among rocky planetesimals until they achieve terminal masses that are regulated by isolation and orbital migration. We quantify our model with numerical simulations and demonstrate that our synthetic planetary systems bear a close resemblance to compact, multi-resonant progenitors of the observed population of short-period extrasolar planets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram of the planet formation scenario considered in this work, in chronological order from top to bottom.
Fig. 2: The formation sequence of a mass-uniform exoplanetary system.
Fig. 3: Architectures of exoplanetary systems at time of disk dispersal, generated within the framework of our model.

Similar content being viewed by others

Data availability

Ascii output files summarizing the time series of our reference simulation (with an output interval of 1,000 years, totalling 1,010 files) are provided at https://www.konstantinbatygin.com/setimeseries.

Code availability

This work utilizes the publicly available mercury6 code (https://www.arm.ac.uk/~jec/). The subroutine detailing user-defined forces is available on request from the corresponding author (K.B.).

References

  1. Chatterjee, S. & Tan, J. C. Inside-out planet formation. Astrophys. J. 53, 780 (2014).

    Google Scholar 

  2. Drażkowska, J., Alibert, Y. & Moore, B. Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016).

    Article  ADS  Google Scholar 

  3. Morbidelli, A. et al. Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nat. Astron. 6, 72–79 (2022).

    Article  ADS  Google Scholar 

  4. Cai, M. X., Tan, J. C. & Portegies Zwart, S. Inside-out planet formation: VI. Oligarchic coagulation of planetesimals from a pebble ring? Mon. Not. R. Astron. Soc. 510, 5486–5499 (2022).

    Article  ADS  Google Scholar 

  5. Lichtenberg, T., Drażkowska, J., Schönbächler, M., Golabek, G. J. & Hands, T. O. Bifurcation of planetary building blocks during Solar System formation. Science 371, 365–370 (2021).

    Article  ADS  Google Scholar 

  6. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2021).

    Article  ADS  Google Scholar 

  7. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).

    Article  ADS  Google Scholar 

  8. Johansen, A. & Youdin, A. Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. Astrophys. J. 662, 627–641 (2007).

    Article  ADS  Google Scholar 

  9. Güttler, C., Blum, J., Zsom, A., Ormel, C. W. & Dullemond, C. P. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513, A56 (2010).

  10. Batygin, K. & Morbidelli, A. Self-consistent model for dust–gas coupling in protoplanetary disks. Astron. Astrophys. 666, A19 (2022).

  11. Lissauer, J. J. Planet formation. Ann. Rev. Astron. Astrophys. 31, 129–174 (1993).

    Article  ADS  Google Scholar 

  12. Kokubo, E. & Ida, S. Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).

    Article  ADS  Google Scholar 

  13. Safronov, V. S. Evoliutsiia Doplanetnogo Oblaka (Nauka, 1969).

  14. Batygin, K. & Morbidelli, A. Formation of giant planet satellites. Astrophys. J. 894, 143 (2020).

  15. Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002).

    Article  ADS  Google Scholar 

  16. Thompson, S. E. et al. Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on Data Release 25. Astrophys. J. Suppl. Ser. 235, 38 (2018).

  17. Petigura, E. A. Two views of the radius gap and the role of light curve fitting. Astron. J. 160, 89 (2020).

  18. Weiss, L. M. et al. The California-Kepler Survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. Astron. J. 155, 48 (2018).

  19. Millholland, S., Wang, S. & Laughlin, G. Kepler multi-planet systems exhibit unexpected intra-system uniformity in mass and radius. Astrophys. J. 849, L33 (2017).

  20. Adams, F. C., Batygin, K., Bloch, A. M. & Laughlin, G. Energy optimization in extrasolar planetary systems: the transition from peas-in-a-pod to runaway growth. Mon. Not. R. Astron. Soc. 493, 5520–5531 (2020).

    Article  ADS  Google Scholar 

  21. Canup, R. M. & Ward, W. R. Formation of the Galilean satellites: conditions of accretion. Astron. J. 124, 3404–3423 (2002).

    Article  ADS  Google Scholar 

  22. Millholland, S. C., He, M. Y. & Zink, J. K. Edge-of-the-multis: evidence for a transition in the outer architectures of compact multiplanet systems. Astron. J. 164, 72 (2022).

  23. Izidoro, A. et al. Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Mon. Not. R. Astron. Soc. 470, 1750–1770 (2017).

    Article  ADS  Google Scholar 

  24. Goldberg, M. & Batygin, K. Architectures of compact super-Earth systems shaped by instabilities. Astron. J. 163, 201 (2022).

  25. Matsumoto, Y. & Ogihara, M. Breaking resonant chains: destabilization of resonant planets due to long-term mass evolution. Astrophys. J. 893, 43 (2020).

  26. Spalding, C., Marx, N. W. & Batygin, K. The resilience of Kepler systems to stellar obliquity. Astron. J. 155, 167 (2018).

  27. Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J. 807, 44 (2015).

  28. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article  ADS  Google Scholar 

  29. Peng, S. & Batygin, K. Interactions among noninteracting particles in planet formation simulations. Astrophys. J. 898, L46 (2020).

  30. Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    Article  ADS  Google Scholar 

  31. Wisdom, J. & Holman, M. Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991).

    Article  ADS  Google Scholar 

  32. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge University Press, 1992).

  33. Mestel, L. On the galactic law of rotation. Mon. Not. R. Astron. Soc. 126, 553 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Bitsch, B., Johansen, A., Lambrechts, M. & Morbidelli, A. The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28 (2015).

  35. Lambrechts, M. et al. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019).

  36. Drazkowska, J. et al. Planet formation theory in the era of ALMA and Kepler: from pebbles to exoplanets. Preprint at https://arxiv.org/abs/2203.09759 (2022).

  37. Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).

    Article  ADS  Google Scholar 

  38. Malhotra, R. Orbital resonances in the solar nebula: strengths and weaknesses. Icarus 106, 264–273 (1993).

    Article  ADS  Google Scholar 

  39. Adachi, I., Hayashi, C. & Nakazawa, K. The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog. Theor. Phys. 56, 1756–1771 (1976).

    Article  ADS  Google Scholar 

  40. Armitage, P. J. Astrophysics of Planet Formation (Cambridge University Press, 2010).

  41. Ward, W. R. Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997).

    Article  ADS  Google Scholar 

  42. Nelson, R. P. Planetary migration in protoplanetary disks. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) (Springer, 2018).

  43. Lyra, W., Paardekooper, S.-J. & Mac Low, M.-M. Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. Astrophys. J. 715, L68–L73 (2010).

    Article  ADS  Google Scholar 

  44. Bitsch, B., Morbidelli, A., Lega, E. & Crida, A. Stellar irradiated discs and implications on migration of embedded planets. II. Accreting discs. Astron. Astrophys. 564, A135 (2014).

  45. Tanaka, H. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. Astrophys. J. 602, 388–395 (2004).

    Article  ADS  Google Scholar 

  46. Papaloizou, J. C. B. & Larwood, J. D. On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Mon. Not. R. Astron. Soc. 315, 823–833 (2000).

    Article  ADS  Google Scholar 

  47. Koenigl, A. Disk accretion onto magnetic T Tauri stars. Astrophys. J. 370, L39 (1991).

    Article  ADS  Google Scholar 

  48. Masset, F. S., Morbidelli, A., Crida, A. & Ferreira, J. Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006).

    Article  ADS  Google Scholar 

  49. Paardekooper, S.-J. & Johansen, A. Giant planet formation and migration. Space Sci. Rev. 214, 38 (2018).

  50. Batygin, K. Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures. Mon. Not. R. Astron. Soc. 451, 2589–2609 (2015).

    Article  ADS  Google Scholar 

  51. Deck, K. M. & Batygin, K. Migration of two massive planets into (and out of) first order mean motion resonances. Astrophys. J. 810, 119 (2015).

  52. Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, A152 (2021).

  53. Ormel, C. W. & Klahr, H. H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).

  54. Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

  55. Dubrulle, B., Morfill, G. & Sterzik, M. The dust subdisk in the protoplanetary nebula. Icarus 114, 237–246 (1995).

    Article  ADS  Google Scholar 

  56. Ormel, C. W. in Formation, Evolution, and Dynamics of Young Solar Systems 197 (2017).

Download references

Acknowledgements

K.B. is grateful to Caltech, Observatoire de la Côte d’Azur, the David and Lucile Packard Foundation and the National Science Foundation (grant number: AST 2109276) for their generous support. A.M. is grateful for support from the ERC advanced grant HolyEarth N. 101019380.

Author information

Authors and Affiliations

Authors

Contributions

K.B. and A.M. jointly conceived the project and collaborated on the interpretation of the results. K.B. carried out the N-body simulations and led the writing of the paper. A.M. ran particle-in-a-box simulations and contributed to writing the manuscript.

Corresponding authors

Correspondence to Konstantin Batygin or Alessandro Morbidelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Lauren Weiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mass budget of solids within a ringed protoplanetary disk.

Output of the disk evolution model delineated in ref. 3. Owing to a hydrodynamic balance between the radial outflow and drag exerted on dust by gas, solids concentrate in the vicinity of their respective sublimation lines, forming planetesimals within discrete rocky and icy rings. Depending on the minimal level of turbulent viscosity that the disk can attain, \({\alpha }_{\min }\), the mass entrained within the r ~ 1 AU annulus of silicate-rich material varies drastically. Importantly, for relatively quiescent nebulae, the rock ring can reach masses on the order of tens of M, readily serving as the birthplace of super-Earths.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batygin, K., Morbidelli, A. Formation of rocky super-earths from a narrow ring of planetesimals. Nat Astron 7, 330–338 (2023). https://doi.org/10.1038/s41550-022-01850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01850-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing