Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5–28

An Author Correction to this article was published on 03 October 2022

This article has been updated

Abstract

Observations of the 21-cm line from primordial hydrogen promise to be one of the best tools to study the early epochs of the Universe: the dark ages, the cosmic dawn and the subsequent epoch of reionization. In 2018, the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) caught the attention of the cosmology community with a potential detection of an absorption feature in the sky-averaged radio spectrum centred at 78 MHz. The feature is deeper than expected, and, if confirmed, would call for new physics. However, different groups have re-analysed the EDGES data and questioned the reliability of the signal. The Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) is a sky-averaged 21-cm experiment aiming at improving the current observations by tackling the issues faced by current instruments related to residual systematic signals in the data. The novel experimental approach focuses on detecting and jointly explaining these systematics together with the foregrounds and the cosmological signal using Bayesian statistics. To achieve this, REACH features simultaneous observations with two different antennas, an ultra-wideband system (redshift range about 7.5 to 28) and a receiver calibrator based on in-field measurements. Simulated observations forecast percent-level constraints on astrophysical parameters, potentially opening up a new window to the infant Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A typical model of the global 21-cm line.
Fig. 2: REACH Phase I field system and location.
Fig. 3: Field and back-end hardware diagram (per antenna).
Fig. 4: Data analysis and calibration diagram.
Fig. 5: Posterior probability distribution forecasts of constraints on 5 astrophysical parameters characterizing the evolution of the 21-cm brightness temperature during cosmic dawn and the epoch of reionization.

Similar content being viewed by others

Data availability

Upon detection or important scientific result our data will be made publicly available on Zenodo.

Code availability

Upon detection or important scientific result our code will be made publicly available on GitHub. The maxsmooth code can be found online at https://github.com/htjb/maxsmooth. The globalemu code can be found online at https://github.com/htjb/globalemu.

Change history

References

  1. Naoz, S., Noter, S. & Barkana, R. The first stars in the Universe. Mon. Not. R. Astron. Soc. 373, L98–L102 (2006).

    Article  ADS  Google Scholar 

  2. Loeb, A. & Furlanetto, S. R. The First Galaxies in the Universe, Princeton University Press (2013).

  3. Klessen, R. in Formation of the First Black Holes (eds Latif, M. & Schleicher, D.), World Scientific, 67–97 (2019).

  4. Barkana, R. The rise of the first stars: supersonic streaming, radiative feedback, and 21-cm cosmology. Phys. Rep. 645, 1–59 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  5. Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: the 21 cm transition and the high-redshift Universe. Phys. Rep. 433, 181–301 (2006).

    Article  ADS  Google Scholar 

  6. Mesinger, A. The Cosmic 21-cm Revolution; Charting the First Billion Years of Our Universe, IOP Science (2019); https://doi.org/10.1088/2514-3433/ab4a73

  7. Cohen, A., Fialkov, A., Barkana, R. & Lotem, M. Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017).

    Article  ADS  Google Scholar 

  8. Fialkov, A., Barkana, R. & Cohen, A. Constraining baryon-dark-matter scattering with the cosmic dawn 21-cm signal. Phys. Rev. Lett. 121, 011101 (2018).

    Article  ADS  Google Scholar 

  9. Fialkov, A. & Barkana, R. Signature of excess radio background in the 21-cm global signal and power spectrum. Mon. Not. R. Astron. Soc. 486, 1763–1773 (2019).

    Article  ADS  Google Scholar 

  10. Reis, I., Fialkov, A. & Barkana, R. High-redshift radio galaxies: a potential new source of 21-cm fluctuations. Mon. Not. R. Astron. Soc. 499, 5993–6008 (2020).

    Article  ADS  Google Scholar 

  11. Bowman, J. D., Rogers, A. E. E. & Hewitt, J. N. Toward empirical constraints on the global redshifted 21 cm brightness temperature during the epoch of reionization. Astrophys. J. 676, 1–9 (2008).

    Article  ADS  Google Scholar 

  12. Singh, S. et al. SARAS 2 constraints on global 21 cm signals from the epoch of reionization. Astrophys. J. 858, 54 (2018).

    Article  ADS  Google Scholar 

  13. Philip, L. et al. Probing radio intensity at high-z from Marion: 2017 instrument. J. Astron. Instrum. 8, 1950004 (2019).

    Article  Google Scholar 

  14. Bernardi, G. et al. Bayesian constraints on the global 21-cm signal from the cosmic dawn. Mon. Not. R. Astron. Soc. 461, 2847–2855 (2016).

    Article  ADS  Google Scholar 

  15. Voytek, T. C., Natarajan, A., Jáuregui García, J. M., Peterson, J. B. & López-Cruz, O. Probing the dark ages at z ~ 20: the SCI-H i 21 cm all-sky spectrum experiment. Astrophys. J. Lett. 782, L9 (2014).

    Article  ADS  Google Scholar 

  16. Sokolowski, M. et al. BIGHORNS - broadband instrument for global hydrogen reionisation signal. Publ. Astron. Soc. Aust. 32, e004 (2015).

    Article  ADS  Google Scholar 

  17. Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).

    Article  ADS  Google Scholar 

  18. Mirocha, J. & Furlanetto, S. R. What does the first highly redshifted 21-cm detection tell us about early galaxies? Mon. Not. R. Astron. Soc. 483, 1980–1992 (2019).

    Article  ADS  Google Scholar 

  19. Schauer, A. T. P., Liu, B. & Bromm, V. Constraining first star formation with 21 cm cosmology. Astrophys. J. Lett. 877, L5 (2019).

    Article  ADS  Google Scholar 

  20. Cohen, A., Fialkov, A., Barkana, R. & Lotem, M. Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017).

    Article  ADS  Google Scholar 

  21. Cohen, A., Fialkov, A., Barkana, R. & Monsalve, R. A. Emulating the global 21-cm signal from cosmic dawn and reionization. Mon. Not. R. Astron. Soc. 495, 4845–4859 (2020).

    Article  ADS  Google Scholar 

  22. Reis, I., Fialkov, A. & Barkana, R. The subtlety of Ly-a photons: changing the expected range of the 21-cm signal. Preprint at https://arxiv.org/abs/2101.01777 (2021).

  23. Furlanetto, S. R. & Pritchard, J. R. The scattering of Lyman-series photons in the intergalactic medium. Mon. Not. R. Astron. Soc. 372, 1093–1103 (2006).

    Article  ADS  Google Scholar 

  24. Pritchard, J. R. & Furlanetto, S. R. Descending from on high: Lyman-series cascades and spin-kinetic temperature coupling in the 21-cm line. Mon. Not. R. Astron. Soc. 367, 1057–1066 (2006).

    Article  ADS  Google Scholar 

  25. Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952).

    Article  Google Scholar 

  26. Field, G. B. Excitation of the hydrogen 21-cm line. Proc. IRE 46, 240–250 (1958).

    Article  ADS  Google Scholar 

  27. Hills, R., Kulkarni, G., Meerburg, P. D. & Puchwein, E. Concerns about modelling of the EDGES data. Nature 564, E32–E34 (2018).

    Article  ADS  Google Scholar 

  28. Singh, S. & Subrahmanyan, R. The redshifted 21 cm signal in the EDGES low-band spectrum. Astrophys. J. 880, 26 (2019).

    Article  ADS  Google Scholar 

  29. Sims, P. H. & Pober, J. C. Testing for calibration systematics in the EDGES low-band data using Bayesian model selection. Mon. Not. R. Astron. Soc. 492, 22–38 (2020).

    Article  ADS  Google Scholar 

  30. Bevins, H. T. J. et al. maxsmooth: rapid maximally smooth function fitting with applications in global 21-cm cosmology. Mon. Not. R. Astron. Soc. 502, 4405–4425 (2021).

    Article  ADS  Google Scholar 

  31. Singh, S. et al. On the detection of a cosmic dawn signal in the radio background. Nat. Astron. 6, 607–617 (2022).

    Article  ADS  Google Scholar 

  32. Handley, W. J., Hobson, M. P. & Lasenby, A. N. POLYCHORD: next-generation nested sampling. Mon. Not. R. Astron. Soc. 453, 4384–4398 (2015).

    Article  ADS  Google Scholar 

  33. Handley, W. J., Hobson, M. P. & Lasenby, A. N. polychord: nested sampling for cosmology. Mon. Not. R. Astron. Soc. 450, L61–L65 (2015).

    Article  ADS  Google Scholar 

  34. Dewdney, P. E., Hall, P. J., Schilizzi, R. T. & Lazio, T. J. L. W. The Square Kilometre Array. Proc. IEEE 97, 1482–1496 (2009).

    Article  ADS  Google Scholar 

  35. Jonas, J. L. Meerkat—the South African array with composite dishes and wide-band single pixel feeds. Proceedings of the IEEE 97, 1522–1530 (2009).

    Article  ADS  Google Scholar 

  36. DeBoer, D. R. et al. Hydrogen Epoch of Reionization Array (HERA). Publ. Astron. Soc. Pac. 129, 045001 (2017).

    Article  ADS  Google Scholar 

  37. Anstey, D., de Lera Acedo, E. & Handley, W. A general Bayesian framework for foreground modelling and chromaticity correction for global 21cm experiments. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/stab1765 (2021).

  38. Roque, I. L. V., Handley, W. J. & Razavi-Ghods, N. Bayesian noise wave calibration for 21-cm global experiments. Mon. Not. R. Astron. Soc. 505, 2638–2646 (2021).

    Article  ADS  Google Scholar 

  39. Anstey, D., Cumner, J., de Lera Acedo, E. & Handley, W. Informing antenna design for sky-averaged 21-cm experiments using a simulated Bayesian data analysis pipeline. Mon. Not. R. Astron. Soc. 509, 4679–4693 (2021).

    Article  ADS  Google Scholar 

  40. Cumner, J. et al. Radio antenna design for sky-averaged 21cm cosmology experiments: the reach case. J. Astron. Instrum. 11, 2250001 (2022).

    Article  Google Scholar 

  41. Shen, E., Anstey, D., de Lera Acedo, E., Fialkov, A. & Handley, W. Quantifying ionospheric effects on global 21-cm observations. Mon. Not. R. Astron. Soc. 503, 344–353 (2021).

    Article  ADS  Google Scholar 

  42. Bevins, H. T. J., Handley, W. J., Fialkov, A., de Lera Acedo, E. & Javid, K. GLOBALEMU: a novel and robust approach for emulating the sky-averaged 21-cm signal from the cosmic dawn and epoch of reionization. Mon. Not. R. Astron. Soc. 508, 2923–2936 (2021).

    Article  ADS  Google Scholar 

  43. Scheutwinkel, K. H., Handley, W. & de Lera Acedo, E. Bayesian evidence-driven likelihood selection for sky-averaged 21-cm signal extraction. Preprint at https://arxiv.org/abs/2204.04491 (2022).

  44. Scheutwinkel, K. H., de Lera Acedo, E. & Handley, W. Bayesian evidence-driven diagnosis of instrumental systematics for sky-averaged 21-cm cosmology experiments. Preprint at https://arxiv.org/abs/2204.04445 (2022).

  45. Rao, M. S., Subrahmanyan, R., Shankar, N. U. & Chluba, J. Modeling the radio foreground for detection of CMB spectral distortions from the cosmic dawn and the epoch of reionization. Astrophys. J. 840, 33 (2017).

    Article  ADS  Google Scholar 

  46. Rogers, A. E. E. & Bowman, J. D. Spectral index of the diffuse radio background measured from 100 to 200 MHz. Astron. J. 136, 641–648 (2008).

    Article  ADS  Google Scholar 

  47. Singh, S. et al. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal. Exp. Astron. 45, 269–314 (2018).

    Article  ADS  Google Scholar 

  48. Price, D. C. et al. Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems. Mon. Not. R. Astron. Soc. 478, 4193–4213 (2018).

    ADS  Google Scholar 

  49. Rogers, A. E. E. & Bowman, J. D. Absolute calibration of a wideband antenna and spectrometer for accurate sky noise temperature measurements. Radio Sci. 47, RS0K06 (2012).

    Article  Google Scholar 

  50. Feng, C. & Holder, G. Enhanced global signal of neutral hydrogen due to excess radiation at cosmic dawn. Astrophys. J. Lett. 858, L17 (2018).

    Article  ADS  Google Scholar 

  51. Ewall-Wice, A. et al. Modeling the radio background from the first black holes at cosmic dawn: implications for the 21 cm absorption amplitude. Astrophys. J. 868, 63 (2018).

    Article  ADS  Google Scholar 

  52. Brandenberger, R., Cyr, B. & Shi, R. Constraints on superconducting cosmic strings from the global 21-cm signal before reionization. J. Cosmol. Astropart. Phys. 2019, 009 (2019).

    Article  Google Scholar 

  53. Ewall-Wice, A., Chang, T.-C. & Lazio, T. J. W. The radio scream from black holes at cosmic dawn: a semi-analytic model for the impact of radio-loud black holes on the 21 cm global signal. Mon. Not. R. Astron. Soc. 492, 6086 (2020).

    Article  ADS  Google Scholar 

  54. Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

    Article  ADS  Google Scholar 

  55. Berlin, A., Hooper, D., Krnjaic, G. & McDermott, S. D. Severely constraining dark-matter interpretations of the 21-cm anomaly. Phys. Rev. Lett. 121, 011102 (2018).

    Article  ADS  Google Scholar 

  56. Barkana, R., Outmezguine, N. J., Redigol, D. & Volansky, T. Strong constraints on light dark matter interpretation of the EDGES signal. Phys. Rev. D 98, 103005 (2018).

    Article  ADS  Google Scholar 

  57. Muñoz, J. B. & Loeb, A. A small amount of mini-charged dark matter could cool the baryons in the early Universe. Nature 557, 684–686 (2018).

    Article  ADS  Google Scholar 

  58. Liu, H., Outmezguine, N. J., Redigolo, D. & Volansky, T. Reviving millicharged dark matter for 21-cm cosmology. Phys. Rev. D 100, 123011 (2019).

    Article  ADS  Google Scholar 

  59. Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D. & Hirata, C. M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70–73 (2012).

    Article  ADS  Google Scholar 

  60. Fialkov, A. & Barkana, R. The rich complexity of 21-cm fluctuations produced by the first stars. Mon. Not. R. Astron. Soc. 445, 213–224 (2014).

    Article  ADS  Google Scholar 

  61. Mirocha, J. Decoding the X-ray properties of pre-reionization era sources. Mon. Not. R. Astron. Soc. 443, 1211–1223 (2014).

    Article  ADS  Google Scholar 

  62. Fixsen, D. J. et al. ARCADE 2 measurement of the absolute sky brightness at 3–90 GHz. Astrophys. J. 734, 5 (2011).

    Article  ADS  Google Scholar 

  63. Dowell, J. & Taylor, G. B. The radio background below 100 MHz. Astrophys. J. Lett. 858, L9 (2018).

    Article  ADS  Google Scholar 

  64. Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803 (1995).

    Article  ADS  Google Scholar 

  65. Biermann, P. L. et al. Cosmic backgrounds due to the formation of the first generation of supermassive black holes. Mon. Not. R. Astron. Soc. 441, 1147–1156 (2014).

    Article  ADS  Google Scholar 

  66. Bolgar, F., Eames, E., Hottier, C. & Semelin, B. Imprints of quasar duty cycle on the 21-cm signal from the epoch of reionization. Mon. Not. R. Astron. Soc. 478, 5564–5578 (2018).

    Article  ADS  Google Scholar 

  67. Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    Article  ADS  Google Scholar 

  68. Jana, R., Nath, B. B. & Biermann, P. L. Radio background and IGM heating due to Pop III supernova explosions. Mon. Not. R. Astron. Soc. 483, 5329–5333 (2019).

    Article  ADS  Google Scholar 

  69. Bolliet, B., Chluba, J. & Battye, R. Spectral distortion constraints on photon injection from low-mass decaying particles. Mon. Not. R. Astron. Soc. 507, 3148–3178 (2021).

    Article  ADS  Google Scholar 

  70. Brahma, N., Sethi, S. & Sista, S. Energy injection in pre-recombination era and EDGES detection. J. Cosmol. Astropart. Phys. 2020, 034 (2020).

    Article  Google Scholar 

  71. Fraser, S. et al. The EDGES 21 cm anomaly and properties of dark matter. Phys. Lett. B 785, 159–164 (2018).

    Article  ADS  Google Scholar 

  72. Pospelov, M., Pradler, J., Ruderman, J. T. & Urbano, A. Room for new physics in the Rayleigh–Jeans tail of the cosmic microwave background. Phys. Rev. Lett. 121, 031103 (2018).

    Article  ADS  Google Scholar 

  73. Caputo, A. et al. Edges and endpoints in 21-cm observations from resonant photon production. Phys. Rev. Lett. 127, 011102 (2021).

    Article  ADS  Google Scholar 

  74. Dhuria, M., Karambelkar, V., Rentala, V. & Sarmah, P. A strong broadband 21 cm cosmological signal from dark matter spin-flip interactions. J. Cosmol. Astropart. Phys. 2021, 041 (2021).

    Article  Google Scholar 

  75. Mozdzen, T. J., Bowman, J. D., Monsalve, R. A. & Rogers, A. E. E. Improved measurement of the spectral index of the diffuse radio background between 90 and 190 MHz. Mon. Not. R. Astron. Soc. 464, 4995–5002 (2017).

    Article  ADS  Google Scholar 

  76. Mozdzen, T. J., Mahesh, N., Monsalve, R. A., Rogers, A. E. E. & Bowman, J. D. Spectral index of the diffuse radio background between 50 and 100 MHz. Mon. Not. R. Astron. Soc. 483, 4411–4423 (2018).

    Article  ADS  Google Scholar 

  77. Meys, R. P. A wave approach to the noise properties of linear microwave devices. IEEE Trans. Microw. Theory Tech. MTT- 26, 34–37 (1978).

    Article  ADS  Google Scholar 

  78. Dicke, R. H. The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instrum. 17, 106–113 (1946).

    Article  ADS  Google Scholar 

  79. Monsalve, R. A., Rogers, A. E. E., Bowman, J. D. & Mozdzen, T. J. Calibration of the EDGES high-band receiver to observe the global 21 cm signature from the epoch of reionization. Astrophys. J. 835, 49 (2017).

    Article  ADS  Google Scholar 

  80. Waterson, M. F. et al. The SKA1 LOW telescope: system architecture and design performance. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9906 (eds Hall, H. J. et al.) 798–811 (SPIE, 2016); https://doi.org/10.1117/12.2232526

  81. Naldi, G. et al. The digital signal processing platform for the low frequency aperture array: preliminary results on the data acquisition unit. J. Astron. Instrum. 06, 1641014 (2017).

    Article  Google Scholar 

  82. Melis, A. et al. A digital beamformer for the PHAROS2 phased array feed. J. Astron. Instrum. 09, 2050013 (2020).

    Article  Google Scholar 

  83. Locatelli, N. T. et al. The Northern Cross fast radio burst project. I. Overview and pilot observations at 408 MHz. Mon. Not. R. Astron. Soc. 494, 1229–1236 (2020).

    Article  ADS  Google Scholar 

  84. Magro, A. et al. A new digital backend for the Mexican Array Radio Telescope. In 2019 International Conference on Electromagnetics in Advanced Applications 0185–0189 (IEEE, 2019); https://doi.org/10.1109/ICEAA.2019.8878959

  85. Magro, A. et al. A software infrastructure for firmware-software interaction: the case of TPMs. In 2017 International Conference on Signals and Systems 190–196 (IEEE, 2017); https://doi.org/10.1109/ICSIGSYS.2017.7967039

  86. Josaitis, A. & de Lera Acedo, E. Measurements of the Radio Spectrum from 10–240MHz in the SKA-SA Core Site (2019); https://tinyurl.com/3efjednb

  87. Newburgh, L. B. et al. HIRAX: a probe of dark energy and radio transients. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9906 (eds Hall, H. J. et al.) 99065X (SPIE, 2016); https://doi.org/10.1117/12.2234286

  88. de Lera Acedo, E. et al. SKA aperture array verification system: electromagnetic modeling and beam pattern measurements using a micro UAV. Exp. Astron. 45, 1–20 (2018).

  89. Cavillot, J., Tihon, D., Mesa, F., de Lera Acedo, E. & Craeye, C. Efficient simulation of large irregular arrays on a finite ground plane. IEEE Trans. Antennas Propag. 68, 2753–2764 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  90. Handley, W. J., Lasenby, A. N., Peiris, H. V. & Hobson, M. P. Bayesian inflationary reconstructions from Planck 2018 data. Phys. Rev. D 100, 103511 (2019).

    Article  ADS  Google Scholar 

  91. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  92. Hergt, L. T., Handley, W. J., Hobson, M. P. & Lasenby, A. N. Bayesian evidence for the tensor-to-scalar ratio r and neutrino masses mν: effects of uniform versus logarithmic priors. Phys. Rev. D 103, 123511 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  93. Shaver, P. A., Windhorst, R. A., Madau, P. & de Bruyn, A. G. Can the reionization epoch be detected as a global signature in the cosmic background? Astron. Astrophys. 345, 380–390 (1999).

    ADS  Google Scholar 

  94. Pritchard, J. & Loeb, A. Cosmology: hydrogen was not ionized abruptly. Nature 468, 772–773 (2010).

    Article  ADS  Google Scholar 

  95. Bowman, J. D. & Rogers, A. E. E. A lower limit of Δz > 0.06 for the duration of the reionization epoch. Nature 468, 796–798 (2010).

    Article  ADS  Google Scholar 

  96. Presley, M. E., Liu, A. & Parsons, A. R. Measuring the cosmological 21 cm monopole with an interferometer. Astrophys. J. 809, 18 (2015).

    Article  ADS  Google Scholar 

  97. Bernardi, G., McQuinn, M. & Greenhill, L. J. Foreground model and antenna calibration errors in the measurement of the sky-averaged λ21 cm signal at z ~ 20. Astrophys. J. 799, 90 (2015).

    Article  ADS  Google Scholar 

  98. Sathyanarayana Rao, M., Subrahmanyan, R., Udaya Shankar, N. & Chluba, J. GMOSS: all-sky model of spectral radio brightness based on physical components and associated radiative processes. Astron. J. 153, 26 (2017).

    ADS  Google Scholar 

  99. Singh, S. et al. First results on the epoch of reionization from first light with SARAS 2. Astrophys. J. Lett. 845, L12 (2017).

    Article  ADS  Google Scholar 

  100. Nhan, B. D., Bradley, R. F. & Burns, J. O. A polarimetric approach for constraining the dynamic foreground spectrum for cosmological global 21 cm measurements. Astrophys. J. 836, 90 (2017).

    Article  ADS  Google Scholar 

  101. Monsalve, R. A., Rogers, A. E. E., Bowman, J. D. & Mozdzen, T. J. Results from EDGES high-band. I. Constraints on phenomenological models for the global 21 cm signal. Astrophys. J. 847, 64 (2017).

    Article  ADS  Google Scholar 

  102. Monsalve, R. A. et al. Results from EDGES high-band. II. Constraints on parameters of early galaxies. Astrophys. J. 863, 11 (2018).

    Article  ADS  Google Scholar 

  103. Monsalve, R. A. et al. Results from EDGES high-band. III. New constraints on parameters of the early Universe. Astrophys. J. 875, 67 (2019).

    Article  ADS  Google Scholar 

  104. Tauscher, K., Rapetti, D., Burns, J. O. & Switzer, E. Global 21 cm signal extraction from foreground and instrumental effects. I. Pattern recognition framework for separation using training sets. Astrophys. J. 853, 187 (2018).

    Article  ADS  Google Scholar 

  105. Rapetti, D., Tauscher, K., Mirocha, J. & Burns, J. O. Global 21 cm signal extraction from foreground and instrumental effects. II. Efficient and self-consistent technique for constraining nonlinear signal models. Astrophys. J. 897, 174 (2020).

    Article  ADS  Google Scholar 

  106. Hibbard, J. J., Tauscher, K., Rapetti, D. & Burns, J. O. Modeling the Galactic foreground and beam chromaticity for global 21 cm cosmology. Astrophys. J. 905, 113 (2020).

    Article  ADS  Google Scholar 

  107. De Oliveira-Costa, A. et al. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. Mon. Not. R. Astron. Soc. 388, 247–260 (2008).

  108. Guzmán, A. E., May, J., Alvarez, H. & Maeda, K. All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz. Astron. Astrophys. 525, A138 (2011).

    Article  ADS  Google Scholar 

  109. Patra, N., Subrahmanyan, R., Sethi, S., Shankar, N. U. & Raghunathan, A. SARAS measurement of the radio background at long wavelengths. Astrophys. J. 801, 138 (2015).

    Article  ADS  Google Scholar 

  110. Spinelli, M. et al. Spectral index of the Galactic foreground emission in the 50–87 MHz range. Mon. Not. R. Astron. Soc. 505, 1575–1588 (2021).

    Article  ADS  Google Scholar 

  111. Spinelli, M., Bernardi, G. & Santos, M. G. On the contamination of the global 21-cm signal from polarized foregrounds. Mon. Not. R. Astron. Soc. 489, 4007–4015 (2019).

    ADS  Google Scholar 

  112. Bevins, H. T. J. maxsmooth: derivative constrained function fitting. J. Open Source Softw. 5, 2596 (2020).

    Article  ADS  Google Scholar 

  113. Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).

    Article  ADS  Google Scholar 

  114. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).

    Article  ADS  Google Scholar 

  115. Sheth, R. K. & Tormen, G. Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999).

    Article  ADS  Google Scholar 

  116. Barkana, R. & Loeb, A. Unusually large fluctuations in the statistics of galaxy formation at high redshift. Astrophys. J. 609, 474–481 (2004).

    Article  ADS  Google Scholar 

  117. Fragos, T. et al. X-ray binary evolution across cosmic time. Astrophys. J. 764, 41 (2013).

    Article  ADS  Google Scholar 

  118. Chuzhoy, L. & Shapiro, P. R. Heating and cooling of the early intergalactic medium by resonance photons. Astrophys. J. 655, 843–846 (2007).

    Article  ADS  Google Scholar 

  119. Mittal, S. & Kulkarni, G. Lyα coupling and heating at cosmic dawn. Mon. Not. R. Astron. Soc. 503, 4264–4275 (2020).

    Article  ADS  Google Scholar 

  120. Venumadhav, T., Dai, L., Kaurov, A. & Zaldarriaga, M. Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn. Phys. Rev. D 98, 103513 (2018).

    Article  ADS  Google Scholar 

  121. Fialkov, A., Barkana, R. & Visbal, E. The observable signature of late heating of the Universe during cosmic reionization. Nature 506, 197–199 (2014).

    Article  ADS  Google Scholar 

  122. Pacucci, F., Mesinger, A., Mineo, S. & Ferrara, A. The X-ray spectra of the first galaxies: 21 cm signatures. Mon. Not. R. Astron. Soc. 443, 678–686 (2014).

    Article  ADS  Google Scholar 

  123. Cohen, A., Fialkov, A. & Barkana, R. Charting the parameter space of the 21-cm power spectrum. Mon. Not. R. Astron. Soc. 478, 2193–2217 (2018).

    Article  ADS  Google Scholar 

  124. Furlanetto, S. R., Zaldarriaga, M. & Hernquist, L. The growth of H ii regions during reionization. Astrophys. J. 613, 1–15 (2004).

    Article  ADS  Google Scholar 

  125. Cohen, A., Fialkov, A. & Barkana, R. The 21-cm BAO signature of enriched low-mass galaxies during cosmic reionization. Mon. Not. R. Astron. Soc. 459, L90–L94 (2016).

    Article  ADS  Google Scholar 

  126. Battye, R. A., Charnock, T. & Moss, A. Tension between the power spectrum of density perturbations measured on large and small scales. Phys. Rev. D 91, 103508 (2015).

    Article  ADS  Google Scholar 

  127. Finelli, F. et al. Exploring cosmic origins with CORE: inflation. J. Cosmol. Astropart. Phys. 2018, 016 (2018).

    Article  MathSciNet  Google Scholar 

  128. Domcke, V. & Garcia-Cely, C. Potential of radio telescopes as high-frequency gravitational wave detectors. Phys. Rev. Lett. 126, 021104 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The REACH collaboration acknowledges the Kavli Institute for Cosmology in Cambridge (www.kicc.cam.ac.uk), Stellenbosch University (www.sun.ac.za), the National Research Foundation of South Africa (www.nrf.ac.za) and the Cambridge–Africa ALBORADA Research Fund (www.cambridge-africa.cam.ac.uk/initiatives/the-alborada-research-fund/) for their financial support of the project. E.d.L.A. wishes to acknowledge the support of the Science and Technology Facilities Council (STFC) through grant number ST/V004425/1 (Ernest Rutherford Fellowship). G.B. and M.S. acknowledge support from the Ministero degli Affari Esteri della Cooperazione Internazionale–Direzione Generale per la Promozione del Sistema Paese Progetto di Grande Rilevanza ZA18GR02 and the National Research Foundation of South Africa (Grant Number 113121) as part of the ISARP RADIOSKY2020 Joint Research Scheme. The research of D.I.L.d.V. and O.S. is supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. M.S. acknowledges funding from the INAF PRIN-SKA 2017 project 1.05.01.88.04 (FORECaST). This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number 75322). H.T.J.B. acknowledges the support of the STFC through grant number ST/T505997/1.

Author information

Authors and Affiliations

Authors

Contributions

E.d.L.A. is the PI and initiator of REACH and led the coordination of the paper write-up and the ‘Main’, ‘Experimental approach’, ‘System design’, ‘High-level system metrics’, ‘Data analysis pipeline’ and ‘Instrument models’ sections. D.I.L.d.V. is the co-PI of REACH and led the ‘Antennas’ and ‘Site and RFI’ sections. N.R.-G. led the ‘Receiver and calibrator’ section. W.H. led the ‘Bayesian data analysis and calibration’ section. A.F. co-led the ‘Science prospects’ section, led the ‘Cosmological models’ section and contributed to the ‘Main’ section. A.M. led the ‘Digital back-end’ section. D.A. led the ‘EDGES data re-analysis’, ‘Data-analysis-driven antenna selection’, ‘Foreground models and chromaticity correction’ and ‘Time- and antenna-dependent modelling’ sections. H.T.J.B. led the ‘Detection of systematic errors’ section. R.C. contributed notably to the ‘Digital back-end’ section. J. Cumner contributed notably to the ‘Antennas’ section. A.T.J. contributed notably to the ‘Site and RFI’ section. I.L.V.R. led the ‘Bayesian receiver calibration’ section. P.H.S. co-led the ‘Science prospects’ section. K.H.S. led the ‘Systematic signals in the data pipeline’ section. The rest of the authors (P.A., G.B., S.C., J. Cavillot, W.C., J.A.E., T.G.-J., Q.G., R.H., G.K., R.M., P.D.M., S.M., J.R.P., E.P., A.S., E.S., O.S., M.S. and K.Z.-A.) contributed to writing different sections and to reviewing the manuscript.

Corresponding author

Correspondence to E. de Lera Acedo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Re-analysis of EDGES public data.

Re-analysis of the publicly available EDGES data restricting the foregrounds to physical parameters (purple) and with unrestricted foreground parameters (orange) for a flatten Gaussian EDGES-style signal model (top-left) and a 21cmGEM standard physical model from [20] (bottom-left). On the right column we show the corresponding residuals after subtraction of the posterior average fitted foreground and signal models.

Extended Data Fig. 2 REACH RX calibration.

Top: Outline of the calibration algorithm. Blue blocks represent data to be taken, red blocks represent calculations and green blocks represent calculation outputs. Bottom: Plot showing the joint posteriors for two noise wave parameters used for calibration of the receiver; TL and TNS. Posteriors are derived using a single room-temperature ‘cold’ load as a calibrator, a single ‘hot’ load heated to 373 K and both loads used in tandem shown in grey, red and blue respectively. The black cross hairs mark the known values of the calibration parameters. A zoom-in of the posterior intersection is provided to illustrate the constraint on parameter values attributed to the correlation between parameters that is considered by our algorithm when deriving the blue, dual-load posterior.

Extended Data Fig. 3 Foreground modelling.

Top: Plot showing the subdivision of the sky in galactic coordinates into a number of regions N=6 of similar spectral index. Bottom: Plot comparing the residuals from fitting simulated 21-cm data. The plots shows the results of fitting data with a 5th order log-polynomial model (left), fitting data corrected by (A1) with a 5th order log-polynomial model (centre) and fitting the data with the REACH pipeline, using N=9 (right). The residuals after subtraction of the foreground models are shown in red. The signal model and true signal inserted into the simulated data, are shown in blue and green respectively, where visible. These results are simulated using a conical log-spiral antenna and a hexagonal dipole antenna.

Extended Data Fig. 4 Resilience to systematic signals.

Top-left: Plot of the recovered 21-cm signal in purple, compared to the true inserted 21-cm signal in green, for simulated data sets of a log spiral and hexagonal dipole antenna. Each data set consisted of three time bins, 20 minutes apart. The lower plots show the results of fitting an integration of the three bins to a single foreground model and the upper plots show the results of fitting the separate bins jointly to corresponding models in a single fit. The rightmost plots show the results of fitting the data sets from both antenna simultaneously in the same fit. Top-right: Plot of the optimum numbers of foreground regions, determined using the Bayesian evidence, for the model fits shown in the top-left plot. Bottom-left: Plot showing a run of the pipeline where the antenna model included the presence of the finite 20x20 m metallic ground plane underneath the spiral antenna. This plot shows that the chromaticity introduced by reflections at the edge of the REACH ground plane, if properly modelled, would not severely affect the ability of the pipeline to recover the cosmological signal. Bottom-right: Plot showing the result of running the data pipeline when a sinusoidal systematic arising from the presence of the 6 m cable connecting the spiral antenna feed point to the receiver has been introduced in the data. The additive systematic signal is shown as a black-solid line in this plot. In the simulated analysis we included a sinusoidal model to fit for this systematic signal simultaneously with the foregrounds and the cosmological signal. This result shows that a detection of the true signal could be achieved in this case.

Supplementary information

Supplementary Information

Supplementary document text and supplementary figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lera Acedo, E., de Villiers, D.I.L., Razavi-Ghods, N. et al. The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5–28. Nat Astron 6, 984–998 (2022). https://doi.org/10.1038/s41550-022-01709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01709-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing