Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The dissipation of the solar nebula constrained by impacts and core cooling in planetesimals

Abstract

Rapid cooling of planetesimal cores has been inferred for several iron meteorite parent bodies on the basis of metallographic cooling rates, and linked to the loss of their insulating mantles during impacts. However, the timing of these disruptive events is poorly constrained. Here, we used the short-lived 107Pd–107Ag decay system to date rapid core cooling by determining Pd–Ag ages for iron meteorites. We show that closure times for the iron meteorites equate to cooling in the time frame ~7.8–11.7 Myr after calcium–aluminium-rich inclusion formation, and that they indicate that an energetic inner Solar System persisted at this time. This probably results from the dissipation of gas in the protoplanetary disk, after which the damping effect of gas drag ceases. An early giant planet instability between 5 and 14 Myr after calcium–aluminium-rich inclusion formation could have reinforced this effect. This correlates well with the timing of impacts recorded by the Pd–Ag system for iron meteorites.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The timing of core cooling and impacts constrained by the Pd–Ag system.
Fig. 2: Cartoon illustrating the evolution of differentiated iron meteorite bodies in the early Solar System (not to scale).

Data availability

All data are available within this Article and its Supplementary Information, or available from the authors on request.

References

  1. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. USA 114, 6712–6716 (2017).

    ADS  Article  Google Scholar 

  2. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    ADS  Article  Google Scholar 

  3. Walsh, K. J. & Morbidelli, A. The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, A126 (2011).

    ADS  Article  Google Scholar 

  4. Yang, J., Goldstein, J. I. & Scott, E. R. D. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446, 888–891 (2007).

    ADS  Article  Google Scholar 

  5. Goldstein, J. I., Scott, E. R. D. & Chabot, N. L. Iron meteorites: crystallization, thermal history, parent bodies, and origin. Geochemistry 69, 293–325 (2009).

    Article  Google Scholar 

  6. Matthes, M., van Orman, J. A. & Kleine, T. Closure temperature of the Pd–Ag system and the crystallization and cooling history of IIIAB iron meteorites. Geochim. Cosmochim. Acta 285, 193–206 (2020).

    ADS  Article  Google Scholar 

  7. Kelly, W. R. & Wasserburg, G. J. Evidence for the existence of 107Pd in the early Solar System. Geophys. Res. Lett. 5, 1079–1082 (1978).

    ADS  Article  Google Scholar 

  8. Woodland, S. J. et al. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites. Geochim. Cosmochim. Acta 69, 2153–2163 (2005).

    ADS  Article  Google Scholar 

  9. Theis, K. J. et al. Palladium–silver chronology of IAB iron meteorites. Earth Planet. Sci. Lett. 361, 402–411 (2013).

    ADS  Article  Google Scholar 

  10. Leya, I. & Masarik, J. Thermal neutron capture effects in radioactive and stable nuclide systems. Meteorit. Planet. Sci. 48, 665–685 (2013).

    ADS  Article  Google Scholar 

  11. Matthes, M., Fischer-Gödde, M., Kruijer, T. S., Leya, I. & Kleine, T. Pd–Ag chronometry of iron meteorites: correction of neutron capture-effects and application to the cooling history of differentiated protoplanets. Geochim. Cosmochim. Acta 169, 45–62 (2015).

    ADS  Article  Google Scholar 

  12. Matthes, M., Fischer-Gödde, M., Kruijer, T. S. & Kleine, T. Pd–Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core. Geochim. Cosmochim. Acta 220, 82–95 (2018).

    ADS  Article  Google Scholar 

  13. Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Silver isotope variations in chondrites: volatile depletion and the initial 107Pd abundance of the Solar System. Geochim. Cosmochim. Acta 72, 5330–5341 (2008).

    ADS  Article  Google Scholar 

  14. Hunt, A. C. et al. Late metal–silicate separation on the IAB parent asteroid: constraints from combined W and Pt isotopes and thermal modelling. Earth Planet. Sci. Lett. 482, 490–500 (2018).

    ADS  Article  Google Scholar 

  15. Hunt, A. C., Ek, M. & Schönbächler, M. Platinum isotopes in iron meteorites: galactic cosmic ray effects and nucleosynthetic homogeneity in the p-process isotope 190Pt and the other platinum isotopes. Geochim. Cosmochim. Acta 216, 82–95 (2017).

    ADS  Article  Google Scholar 

  16. Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).

    ADS  Article  Google Scholar 

  17. Wasson, J. T. & Kallemeyn, G. W. The IAB iron-meteorite complex: a group, five sub-groups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochim. Cosmochim. Acta 66, 2445–2473 (2002).

    ADS  Article  Google Scholar 

  18. Benedix, G. K., McCoy, T. J., Keil, K. & Love, S. G. A petrologic study of the IAB iron meteorites: constraints on the formation of the IAB-winonaite parent body. Meteorit. Planet. Sci. 35, 1127–1141 (2000).

    ADS  Article  Google Scholar 

  19. Hilton, C. D. & Walker, R. J. New implications for the origin of the IAB main group iron meteorites and the isotopic evolution of the noncarbonaceous (NC) reservoir. Earth Planet. Sci. Lett. 540, 116248 (2020).

    Article  Google Scholar 

  20. Pravdivtseva, O., Meshik, A., Hohenberg, C. M. & Kurat, G. I–Xe ages of Campo del Cielo silicates as a record of the complex early history of the IAB parent body. Meteorit. Planet. Sci. 48, 2480–2490 (2013).

    ADS  Article  Google Scholar 

  21. Schulz, T., Munker, C., Mezger, K. & Palme, H. Hf–W chronometry of primitive achondrites. Geochim. Cosmochim. Acta 74, 1706–1718 (2010).

    ADS  Article  Google Scholar 

  22. Schulz, T., Münker, C., Palme, H. & Mezger, K. Hf–W chronometry of the IAB iron meteorite parent body. Earth Planet. Sci. Lett. 280, 185–193 (2009).

    ADS  Article  Google Scholar 

  23. Kruijer, T. S., Kleine, T., Fischer-Gödde, M., Burkhardt, C. & Wieler, R. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett. 403, 317–327 (2014).

    ADS  Article  Google Scholar 

  24. Kleine, T. et al. Hf–W thermochronometry: closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth Planet. Sci. Lett. 270, 106–118 (2008).

    ADS  Article  Google Scholar 

  25. Worsham, E. A., Bermingham, K. R. & Walker, R. J. Characterizing cosmochemical materials with genetic affinities to the Earth: genetic and chronological diversity within the IAB iron meteorite complex. Earth Planet. Sci. Lett. 467, 157–166 (2017).

    ADS  Article  Google Scholar 

  26. Lichtenberg, T., Golabek, G. J., Gerya, T. V. & Meyer, M. R. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016).

    ADS  Article  Google Scholar 

  27. Trinquier, A., Birck, J.-L. & Allègre, C. Widespread 54Cr heterogeneity in the inner Solar System. Astrophys. J. 655, 1179–1185 (2007).

    ADS  Article  Google Scholar 

  28. Wasson, J. T. & Huber, H. Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core. Geochim. Cosmochim. Acta 70, 6153–6167 (2006).

    ADS  Article  Google Scholar 

  29. Spitzer, F., Burkhardt, C., Pape, J. & Kleine, T. Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteorit. Planet. Sci. 57, 261–276 (2022).

    ADS  Article  Google Scholar 

  30. Hellmann, J. L., Kruijer, T. S., Van Orman, J. A., Metzler, K. & Kleine, T. Hf–W chronology of ordinary chondrites. Geochim. Cosmochim. Acta 258, 290–309 (2019).

    ADS  Article  Google Scholar 

  31. Davison, T. M., O’Brien, D. P., Ciesla, F. J. & Collins, G. S. The early impact histories of meteorite parent bodies. Meteorit. Planet. Sci. 48, 1894–1918 (2013).

    ADS  Article  Google Scholar 

  32. Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    ADS  Article  Google Scholar 

  33. Walsh, K. J. & Levison, H. F. Planetesimals to terrestrial planets: collisional evolution amidst a dissipating gas disk. Icarus 329, 88–100 (2019).

    ADS  Article  Google Scholar 

  34. Haisch, K. E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, L153 (2001).

    ADS  Article  Google Scholar 

  35. Ikoma, M., Nakazawa, K. & Emori, H. Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013–1025 (2000).

    ADS  Article  Google Scholar 

  36. Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    ADS  Article  Google Scholar 

  37. Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N. & Levison, H. F. Timing of the formation and migration of giant planets as constrained by CB chondrites. Sci. Adv. 2, e1601658 (2016).

    ADS  Article  Google Scholar 

  38. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS  Article  Google Scholar 

  39. Turrini, D., Magni, G. & Coradini, A. Probing the history of Solar System through the cratering records on Vesta and Ceres. Mon. Not. R. Astron. Soc. 413, 2439–2466 (2011).

    ADS  Article  Google Scholar 

  40. Turrini, D., Coradini, A. & Magni, G. Jovian early bombardment: planetesimal erosion in the inner asteroid belt. Astrophys. J. 750, 8 (2012).

    ADS  Article  Google Scholar 

  41. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS  Article  Google Scholar 

  42. Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    ADS  Article  Google Scholar 

  43. Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K. & Levison, H. F. Constructing the secular architecture of the Solar System II: the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009).

    ADS  Article  Google Scholar 

  44. Boehnke, P. & Harrison, T. M. Illusory Late Heavy Bombardments. Proc. Natl Acad. Sci. USA 113, 10802–10806 (2016).

  45. Quarles, B. & Kaib, N. Instabilities in the early Solar System due to a self-gravitating disk. Astron. J. 157, 67 (2019).

  46. Ribeiro, Rd. S. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).

    Article  Google Scholar 

  47. Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    ADS  Article  Google Scholar 

  48. Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E. & Walsh, K. J. The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus 321, 778–790 (2019).

    ADS  Article  Google Scholar 

  49. Liu, B., Raymond, S. N. & Jacobson, S. B. Early Solar System instability triggered by dispersal of the gaseous disk. Nature 604, 643–646 (2022).

    ADS  Article  Google Scholar 

  50. Hunt, A. C., Ek, M. & Schönbächler, M. Separation of platinum from palladium and iridium in iron meteorites and accurate high-precision determination of platinum isotopes by multi-collector ICP-MS. Geostand. Geoanalytical Res. 41, 633–647 (2017).

    Article  Google Scholar 

  51. Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. High precision Ag isotope measurements in geologic materials by multiple-collector ICPMS: an evaluation of dry versus wet plasma. Int. J. Mass Spectrom. 261, 183–191 (2007).

    Article  Google Scholar 

  52. Blichert-Toft, J., Moynier, F., Lee, C.-T. A., Telouk, P. & Albarède, F. The early formation of the IVA iron meteorite parent body. Earth Planet. Sci. Lett. 296, 469–480 (2010).

    ADS  Article  Google Scholar 

  53. Chabot, N. L. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochim. Cosmochim. Acta 68, 3607–3618 (2004).

    ADS  Article  Google Scholar 

  54. Randich, E. & Goldstein, J. I. Cooling rates of seven hexahedrites. Geochim. Cosmochim. Acta 42, 221–233 (1978).

    ADS  Article  Google Scholar 

  55. Ludwig, K. R. ISOPLOT 3.00. A Geochronological Toolkit for Microsoft Excel Special Publication 4 (Berkeley Geochronological Center, 2003).

Download references

Acknowledgements

This work was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013/ERC grant agreement 279779, M.S.). We gratefully acknowledge funding from STFC (ST/F002157/1 and ST/J001260/1, M.R.; ST/J001643/1, M.S.) and funding from the Swiss National Science Foundation (project 200020_179129, M.S.). A.C.H. wishes to thank M. Ek and M. Fehr for laboratory assistance at ETH Zürich during this study. M.S. would like to thank R. Carlson and M. Horan (DTM, Carnegie Institution) for their support and the opportunity to analyse Ag isotopes in May 2006. We also thank C. Smith and D. Cassey (Natural History Museum, London) and J. Hoskin (Smithsonian Institution National Museum of Natural History) for the loan of samples used in this work.

Author information

Authors and Affiliations

Authors

Contributions

M.S. designed the study. A.C.H., K.J.T. and M.S. prepared samples for isotope analyses and conducted the isotopic measurements. All authors were involved in the data interpretation and writing of the manuscript.

Corresponding author

Correspondence to Alison C. Hunt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks James Van Orman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Covariation of ε192Pt and ε196Pt for the IAB, IIAB and IIIAB iron meteorites.

The GCR model calculations10 are shown for Ir/Pt ratios measured for these groups (dashed lines; Ir/Pt ratios for individual samples are given in Supplementary Materials Table 1). Uncertainties are 2 S.D.

Extended Data Fig. 2 Isochron diagrams for a) IAB, b) IIAB, and c) IIIAB iron meteorites for the Pd–Ag system.

In each case, ε107Ag is plotted against 108Pd/109Ag for both GCR-corrected (filled symbols) and GCR-uncorrected data (unfilled symbols). Uncertainties on GCR-uncorrected data are 2 S.D. and within the size of the symbol (Table 1), while uncertainties for ε107Ag for GCR-corrected data represent the propagated 2 S.D. uncertainties of the GCR correction (Table 2). Isochrons are determined using GCR-corrected data and ISOPLOT55. *denotes GCR-corrected data from source11, shown for comparison but not included in the regressions.

Extended Data Fig. 3 IAB parent body evolution for both metal cooling times.

In both scenarios the parent body accreted relatively late at ~1.4 Myr and then underwent limited metal-silicate differentiation at ~6.0 Myr after CAI14. For metal cooling at ~12.8 Myr, the catastrophic impact event occurred in the timeframe ~11–13.6 Myr. This was followed by fast cooling and closure of the Pd–Ag system at ~12.8 +3.1/-4.6 Myr. For metal cooling at ~7.9 Myr after CAI the body was disrupted at about 6 Myr, while at or near its peak temperature. It then cooled quickly, leading to closure of the Pd–Ag system at 7.9 +1.0/-1.1 Myr.

Supplementary information

Supplementary Table 1

Summary of concentration and isotope data for Pd–Ag and Pt for IAB, IIAB and IIIAB iron meteorites.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hunt, A.C., Theis, K.J., Rehkämper, M. et al. The dissipation of the solar nebula constrained by impacts and core cooling in planetesimals. Nat Astron (2022). https://doi.org/10.1038/s41550-022-01675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-022-01675-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing