Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds

This article has been updated

Abstract

The most active icy worlds such as Europa or Enceladus are predicted to host extensive aqueous alteration driven by water–rock interactions at elevated temperatures1,2,3. On the other hand, it is assumed that such alteration is kinetically inhibited at the subzero temperatures of other icy worlds, such as the mid-sized moons of Saturn and Uranus or trans-Neptunian objects1,4. Here we perform aqueous alteration experiments on a chondrite-analogue material (olivine) and find that chemical alteration processes are still efficient at temperatures as low as −20 °C, as the presence of an unfrozen water film still allows olivine to dissolve in partially frozen alkaline solutions. We infer that aqueous alteration may be enhanced by salts and ammonia present in icy worlds, and therefore remains a geologically rapid process even at subzero temperatures. Our results imply that the primary chondritic minerals in most icy bodies exceeding 400–500 km in diameter will be completely altered to hydrous secondary minerals early in their evolutionary histories.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Characterization of the ice, unfrozen solution and ice–olivine interface.
Fig. 2: Measured [Si] and [Mg] over time and calculated olivine dissolution rates over temperature.
Fig. 3: Solid-state analysis of an olivine grain reacted in 0.8% NH3 for 442 d at −20 °C.

Data availability

The data that support the plots in Fig. 2 are provided in the Supplementary Information. These and all other data that support the figures, table and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 10 March 2022

    In the version of this article initially published, an extraneous black overlay appeared beneath the colored atoms in Fig. 3b and has now been removed for clarity.

References

  1. Vance, S. D. & Melwani Daswani, M. Serpentinite and the search for life beyond Earth. Philos. Trans. R. Soc. A 378, 20180421 (2020).

    ADS  Article  Google Scholar 

  2. Waite, J. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    ADS  Article  Google Scholar 

  3. Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

    ADS  Article  Google Scholar 

  4. Malamud, U. & Prialnik, D. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies. Icarus 246, 21–36 (2015).

    ADS  Article  Google Scholar 

  5. Malamud, U. & Prialnik, D. A 1-D evolutionary model for icy satellites, applied to Enceladus. Icarus 268, 1–11 (2016).

    ADS  Article  Google Scholar 

  6. Palguta, J., Schubert, G. & Travis, B. J. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. 296, 235–243 (2010).

    ADS  Article  Google Scholar 

  7. Guilbert-Lepoutre, A., Prialnik, D. & Métayer, R. in The Trans-Neptunian Solar System 183–201 (Elsevier, 2020).

  8. Ohnishi, I. & Tomeoka, K. Hydrothermal alteration experiments of enstatite: implications for aqueous alteration of carbonaceous chondrites. Meteorit. Planet. Sci. 42, 49–61 (2007).

    ADS  Article  Google Scholar 

  9. Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).

    ADS  Article  Google Scholar 

  10. Marion, G. M. & Kargel, J. S. Cold Aqueous Planetary Geochemistry with FREZCHEM: from Modeling to the Search for Life at the Limits (Springer, 2007).

  11. Marion, G., Kargel, J., Catling, D. & Lunine, J. Modeling ammonia–ammonium aqueous chemistries in the Solar System’s icy bodies. Icarus 220, 932–946 (2012).

    ADS  Article  Google Scholar 

  12. Hausrath, E. & Brantley, S. L. Basalt and olivine dissolution under cold, salty, and acidic conditions: what can we learn about recent aqueous weathering on Mars? J. Geophys. Res. Planets 115, E12001 (2010).

    ADS  Article  Google Scholar 

  13. Niles, P. B., Michalski, J., Ming, D. W. & Golden, D. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat. Commun. 8, 998 (2017).

    ADS  Article  Google Scholar 

  14. Pokrovsky, O. S. & Schott, J. Kinetics and mechanism of forsterite dissolution at 25 °C and pH from 1 to 12. Geochim. Cosmochim. Acta 64, 3313–3325 (2000).

    ADS  Article  Google Scholar 

  15. Rimstidt, J. D., Brantley, S. L. & Olsen, A. A. Systematic review of forsterite dissolution rate data. Geochim. Cosmochim. Acta 99, 159–178 (2012).

    ADS  Article  Google Scholar 

  16. Anderson, D. M. The interface between ice and silicate surfaces. J. Colloid Interface Sci. 25, 174–191 (1967).

    ADS  Article  Google Scholar 

  17. Barer, S., Churaev, N., Derjaguin, B., Kiseleva, O. & Sobolev, V. Viscosity of nonfreezing thin interlayers between the surfaces of ice and quartz. J. Colloid Interface Sci. 74, 173–180 (1980).

    Article  Google Scholar 

  18. Rietmeijer, F. J. A model for diagenesis in proto-planetary bodies. Nature 313, 293–294 (1985).

    ADS  Article  Google Scholar 

  19. Dickinson, W. W. & Rosen, M. R. Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31, 199–202 (2003).

    ADS  Article  Google Scholar 

  20. Park, R. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016).

    ADS  Article  Google Scholar 

  21. Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).

    ADS  Article  Google Scholar 

  22. Zannoni, M., Hemingway, D., Casajus, L. G. & Tortora, P. The gravity field and interior structure of Dione. Icarus 345, 113713 (2020).

    Article  Google Scholar 

  23. Bach, W. Some compositional and kinetic controls on the bioenergetic landscapes in oceanic basement. Front. Microbiol. 7, 107 (2016).

    Article  Google Scholar 

  24. Běhounková, M. et al. Tidally induced magmatic pulses on the oceanic floor of Jupiter’s moon Europa. Geophys. Res. Lett. 48, e2020GL090077 (2021).

    ADS  Article  Google Scholar 

  25. Affholder, A., Guyot, F., Sauterey, B., Ferrière, R. & Mazevet, S. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).

  26. Brunetto, R. & Lantz, C. Laboratory perspectives on sample returns from Hayabusa2 and OSIRIS-REx. Nat. Astron. 3, 290–292 (2019).

    ADS  Article  Google Scholar 

  27. Marchi, S. et al. An aqueously altered carbon-rich Ceres. Nat. Astron. 3, 140–145 (2019).

    ADS  Article  Google Scholar 

  28. Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    ADS  Article  Google Scholar 

  29. O’Hanley, D. S. Serpentinites: Records of Tectonic and Petrological History (Oxford University Press on Demand, 1996).

  30. Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).

    ADS  Article  Google Scholar 

  31. Rubin, A. E. Size–frequency distributions of chondrules in CO3 chondrites. Meteoritics 24, 179–189 (1989).

    ADS  Article  Google Scholar 

  32. Zolotov, M. Y. An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34, L23203 (2007).

    ADS  Article  Google Scholar 

  33. Glein, C. R., Baross, J. A. & Waite, J. The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).

    ADS  Article  Google Scholar 

  34. Miller, H. M. et al. Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochim. Cosmochim. Acta 179, 217–241 (2016).

    ADS  Article  Google Scholar 

  35. Lafay, R., Fernandez-Martinez, A., Montes-Hernandez, G., Auzende, A. L. & Poulain, A. Dissolution–reprecipitation and self-assembly of serpentine nanoparticles preceding chrysotile formation: insights into the structure of protoserpentine. Am. Mineral. 101, 2666–2676 (2016).

    ADS  Article  Google Scholar 

  36. Ball, J. & Nordstrom, D. User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters 189 (US Geological Survey, 1991).

  37. Schaffer, M., Schaffer, B. & Ramasse, Q. Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 62–71 (2012).

    Article  Google Scholar 

  38. Lazić, I., Bosch, E. G. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    Article  Google Scholar 

  39. Bosch, E. G. & Lazić, I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy 156, 59–72 (2015).

    Article  Google Scholar 

  40. Daval, D. et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2. Chem. Geol. 284, 193–209 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the French Agence Nationale de Recherche, project ANR OASIS (grant ANR-16-CE31-0023-01). We thank Y. Marrocchi for the raw San Carlos olivine and SELFRAG AG (Kerzers, Switzerland) for the high-voltage pulsed-power fragmentation of the original San Carlos olivine sample. The use of equipment in the Potsdam Imaging and Spectral Analysis Facility (PISA) is acknowledged. We especially thank the European Regional Development Fund and the State of Brandenburg for the Themis Z TEM (part of PISA). Chemical analyses using ICP-AES and Brunauer–Emmett–Teller (BET) surface area measurements were performed at the geochemistry–mineralogy platform of ISTerre (UGA, Grenoble, France), partially funded by a grant from Labex OSUG@2020. We also thank A. Schreiber (GFZ) for her help in developing the FIB technique used and N. Findling (ISTerre) for assistance with the subzero alteration experiments.

Author information

Authors and Affiliations

Authors

Contributions

L.T. designed the project. A.Z. performed the experiments, ICP-AES analyses and geochemical modelling. R.H. evaluated the kinetic behaviour of olivine dissolution and interpreted TEM results with V.R. FIB and TEM work was carried out by V.R. Raman analyses were performed and interpreted by M.M. The manuscript was written by A.Z., R.H., G.T. and L.T., with contributions from all coauthors. All coauthors contributed to the discussion and interpretation of the data.

Corresponding author

Correspondence to Amber Zandanel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ashley King, Yasuhito Sekine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–9 and Tables 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zandanel, A., Hellmann, R., Truche, L. et al. Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nat Astron 6, 554–559 (2022). https://doi.org/10.1038/s41550-022-01613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01613-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing