Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples

An Author Correction to this article was published on 11 March 2022

This article has been updated

Abstract

Lunar chronology models are built by associating the radiometric ages of samples returned by the Apollo and Luna missions measured in the laboratory with compiled crater distributions of those sites. Such models have not only been widely used to determine the absolute ages of various regions on the Moon1,2,3,4,5,6, but have also been generalized to date the surfaces of the rocky bodies of the inner Solar System7,8,9,10,11,12. However, there is a gap in lunar samples ages between 3.0 Gyr ago and 1.0 Gyr ago13, which occupies almost half of the history of the Moon. Chang’e-5, the first lunar sample return mission since the Luna 24 lander in 1976, brought back basalt material from a young mare area that has been dated to the centre of this gap at 2.030 ± 0.004 Gyr old14. Using this radiometric age, we updated the most widely used chronology models, focusing in particular on the Neukum model13. We found that the updated model is consistent with a combination of an exponential decrease and a linear rate. The updated chronology gives older ages with respect to the Neukum model for most of the lunar history, with a maximum difference of 0.24 Gyr at 2.55 Gyr ago. Differences from other models are of comparable magnitude or greater. These results have important implications for the chronology and impact history of the inner Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lunar sampling sites and mapped craters in the Chang’e-5 landing area.
Fig. 2: New lunar chronology model and comparison with the widely used Neukum model.
Fig. 3: Cratering rate and the difference between the new model and the Neukum model.
Fig. 4: Comparison of our lunar chronology model and previous models.

Similar content being viewed by others

Data availability

The data points used to fit the new chronology model include those from Neukum13, Hiesinger et al.23, Jia et al.19, Wu et al.22, Qian et al.17 and the radiometric age (2.030 ± 0.004 Ga) from Li et al.14. The mapped craters in the Chang'e-5 landing area can be found at https://zenodo.org/record/5615501#.YXvMT5pByF4.

Code availability

The code for fitting the new lunar cratering chronology function can be found at https://zenodo.org/record/5615459#.YXvHJppByF4.

Change history

References

  1. Hiesinger, H. et al. Ages of mare basalts on the lunar nearside. J. Geophys. Res. 105, 29239–29275 (2000).

    Article  ADS  Google Scholar 

  2. Hiesinger, H. et al. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 108, 5065 (2003).

    Article  Google Scholar 

  3. Hiesinger, H. et al. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements. J. Geophys. Res. 115, E03003 (2010).

    ADS  Google Scholar 

  4. Whitten, J. et al. Lunar mare deposits associated with the Orientale impact basin: new insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. 116, E00G9 (2011).

    Google Scholar 

  5. Kirchoff, M. R. et al. Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age. Icarus 225, 325–341 (2013).

    Article  ADS  Google Scholar 

  6. Yue, Z. et al. Refined model age for Orientale Basin derived from zonal crater dating of its ejecta. Icarus 346, 113804 (2020).

    Article  Google Scholar 

  7. Ivanov, B. A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).

    Article  ADS  Google Scholar 

  8. Michael, G. G. Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).

    Article  ADS  Google Scholar 

  9. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).

    Article  ADS  Google Scholar 

  10. Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the Inner Solar System in relation to thelunar reference. Space Sci. Rev. 96, 55–86 (2001).

    Article  ADS  Google Scholar 

  11. Hartmann, W. K. Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005).

    Article  ADS  Google Scholar 

  12. Hartmann, W. K. & Daubar, I. J. Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteorit. Planet. Sci. 52, 493–510 (2017).

    Article  ADS  Google Scholar 

  13. Neukum, G. Meteorite Bombardment and Dating of Planetary Surfaces. Habilitation thesis, Univ. Munich (1983).

  14. Li, Q. L. et al. Two billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  ADS  Google Scholar 

  15. Wang, J. et al. Localization of the Chang’e-5 lander using radio-tracking and image-based methods. Remote Sens. 13, 590–601 (2021).

    Article  ADS  Google Scholar 

  16. Qian, Y. et al. The regolith properties of the Chang’e-5 landing region and the ground drilling experiments using lunar regolith simulants. Icarus 337, 113508 (2020).

    Article  Google Scholar 

  17. Qian, Y. et al. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 555, 116702 (2021).

    Article  Google Scholar 

  18. Yue, Z. et al. Lunar regolith thickness deduced from concentric craters in the CE-5 landing area. Icarus 329, 46–54 (2019).

    Article  ADS  Google Scholar 

  19. Jia, M. et al. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet. Sci. Lett. 541, 116272 (2020).

    Article  Google Scholar 

  20. Hu, S. et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature 600, 49–53 (2021).

    Article  ADS  Google Scholar 

  21. Qian, Y. Q. et al. Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region. J. Geophys. Res. Planets 123, 1407–1430 (2018).

    Article  ADS  Google Scholar 

  22. Wu, B. et al. Rock abundance and crater density in the candidate Chang’E-5 landing region on the Moon. J. Geophys. Res. Planets 123, 3256–3272 (2018).

    Article  ADS  Google Scholar 

  23. Hiesinger, H. et al. How old are young lunar craters? J. Geophys. Res. 117, E00H10 (2012).

    Google Scholar 

  24. Wagner, R., Head, J. W. III, Wolf, U. & Neukum, G. Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon. J. Geophys. Res. 107, E00H10 (2002).

    Google Scholar 

  25. Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011).

    Article  ADS  Google Scholar 

  26. Marchi, S. et al. A New chronology for the Moon and Mercury. Astrophys. J. 137, 4936–4948 (2009).

    Google Scholar 

  27. Robbins, S. J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014).

    Article  ADS  Google Scholar 

  28. Marchi, S. et al. Small crater populations on Vesta. Planet. Space Sci. 103, 96–103 (2014).

    Article  ADS  Google Scholar 

  29. Schmedemann, N. et al. The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planet. Space Sci. 103, 104–130 (2014).

    Article  ADS  Google Scholar 

  30. Chapman, C. R. et al. Cratering on Ida. Icarus 120, 77–86 (1996).

    Article  ADS  Google Scholar 

  31. Shoemaker, E. M., Hackman, R. J. & Eggleton, R. E. Interplanetary correlation of geologic time. Adv. Astronaut. Sci. 8, 70–79 (1962).

    Google Scholar 

  32. Michael, G. G. & Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 294, 223–229 (2010).

    Article  ADS  Google Scholar 

  33. Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001).

    Article  ADS  Google Scholar 

  34. Hartmann, W. K. Martian cratering VI: crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteorit. Planet. Sci. 34, 167–177 (1999).

    Article  ADS  Google Scholar 

  35. Morota, T., Ukai, T. & Furumoto, M. Influence of the asymmetrical cratering rate on the lunar cratering chronology. Icarus 173, 322–332 (2005).

    Article  ADS  Google Scholar 

  36. Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the terrestrial planets. Icarus 197, 291–306 (2008).

    Article  ADS  Google Scholar 

  37. Gallant, J., Gladman, B. & Cuk, M. Current bombardment of the Earth-Moon system: emphasis on cratering asymmetries. Icarus 202, 371–382 (2009).

    Article  ADS  Google Scholar 

  38. Coleman, T. F. & Li, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996).

    Article  MathSciNet  Google Scholar 

  39. Coleman, T. F. & Li, Y. On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67, 189–224 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The Change'e-5 mission was carried out by the Chinese Lunar Exploration Program. This work was supported by the Strategic Priority Program of the Chinese Academy of Sciences (grant no. XDB41000000), the National Natural Science Foundation of China (grant nos 41941003, 41773065 and 41972321) and the Key Research Program of Frontier Sciences, CAS (grant no. QYZDY-SSW-DQC028).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. and K.D. planned the research and prepared the manuscript with the help of Z.O. K.D., W.W., Z.L., S.G., B.L., M.P., Y.W., M.J. and J. L. processed the data.

Corresponding author

Correspondence to Kaichang Di.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Nicolle Zellner, Michelle Kirkhoff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Di, K., Wan, W. et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat Astron 6, 541–545 (2022). https://doi.org/10.1038/s41550-022-01604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01604-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing