Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cold gas removal from the centre of a galaxy by a low-luminosity jet

Abstract

The energy emitted by active galactic nuclei (AGNs) may provide a self-regulating process (AGN feedback) that shapes the evolution of galaxies. This is believed to operate along two modes, namely on galactic scales by clearing the interstellar medium via outflows, and on circumgalactic scales by preventing the cooling and accretion of gas onto the host galaxy. Radio jets associated with radiatively inefficient AGNs are known to contribute to the latter mode of feedback. However, such jets could also play a role on circumnuclear and galactic scales, blurring the distinction between the two modes. We have discovered a spatially resolved, massive molecular outflow, carrying ~75% of the gas in the central region of the host galaxy of a radiatively inefficient AGN. The outflow coincides with the radio jet 540 pc offset from the core, unambiguously pointing to the jet as the driver of this phenomenon. The modest luminosity of the radio source (L1.4 GHz = 2.1 × 1023 W Hz−1) confirms predictions of simulations that jets of low-luminosity radio sources carry enough power to drive such outflows. Including kiloparsec-scale feedback from such sources, which comprise the majority of the radio AGN population, in cosmological simulations may assist in resolving some of their limitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CO emission from NGC 1167.
Fig. 2: Kinematics of the cold gas.
Fig. 3: Snapshots from the simulations.
Fig. 4: Synthetic position–velocity diagrams.

Similar content being viewed by others

Data availability

The data presented in this paper were observed with NOEMA under project ID S20BH. The reduced data products are available at https://astrodrive.astro.rug.nl/index.php/s/e3RTJ5wnpGFGFd9 or from the corresponding authors upon reasonable request. The simulation data for which results are shown in our paper are results from earlier simulations6 and are available in raw form at www2.ccs.tsukuba.ac.jp/Astro/Members/ayw/depot/B2_0258+35/data/, where data.0000.flt, data.0037.flt and data.0100.flt are the data for time snapshots at t = 0, t = 0.2 Myr and t = 0.8 Myr, respectively (Figs. 3 and 4). These data are in a standard single-precision flt binary output format of the hydrodynamic code PLUTO that combines all thermodynamic variables into one file for one snapshot in time.

Code availability

The data were reduced using publicly available software GILDAS and AIPS. The scripts with which the data cubes from the simulations were analysed are a part of the repository at https://bitbucket.org/pandante/pluto-ug-simulation-analyzer/. In particular, the branch B2_0258+35 contains the specific tools used to obtain the analysis results and plots presented in Figs. 3 and 4. The simulations in ref. 6 were performed with the PLUTO code, publicly available at http://plutocode.ph.unito.it/. A version of the code that includes routines to set up the simulations is available at https://github.com/aywander/pluto-outflows.git and requires additional set-up data files available at https://www2.ccs.tsukuba.ac.jp/Astro/Members/ayw/depot/P45_dir45/setup/. The simulation also requires initial data of the clumpy fractal multiphase gas generated by the code pyFC, also publicly available at https://pypi.org/project/pyFC/.

References

  1. McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14, 55023 (2012).

    Article  Google Scholar 

  2. Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    Article  ADS  Google Scholar 

  3. Sutherland, R. S. & Bicknell, G. V. Interactions of a light hypersonic jet with a nonuniform interstellar medium. Astrophys. J. Suppl. Ser. 173, 37–69 (2007).

    Article  ADS  Google Scholar 

  4. Wagner, A. Y., Bicknell, G. V. & Umemura, M. Driving outflows with relativistic jets and the dependence of active galactic nucleus feedback efficiency on interstellar medium inhomogeneity. Astrophys. J. 757, 136 (2012).

    Article  ADS  Google Scholar 

  5. Mukherjee, D., Bicknell, G. V., Sutherland, R. & Wagner, A. Relativistic jet feedback in high-redshift galaxies – I. Dynamics. Mon. Not. R. Astron. Soc. 461, 967–983 (2016).

    Article  ADS  Google Scholar 

  6. Mukherjee, D., Bicknell, G. V., Wagner, A. Y., Sutherland, R. S. & Silk, J. Relativistic jet feedback – III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 479, 5544–5566 (2018).

    Article  ADS  Google Scholar 

  7. Brienza, M. et al. Astrophysics duty cycle of the radio galaxy B2 0258+35. Astron. Astrophys. 45, A45 (2018).

    Article  Google Scholar 

  8. Giroletti, M., Giovannini, G. & Taylor, G. B. Low power compact radio galaxies at high angular resolution. Astron. Astrophys. 441, 89–101 (2005).

    Article  ADS  Google Scholar 

  9. Ho, L. C. Origin and dynamical support of ionized gas in galaxy bulges. Astrophys. J. 699, 638–648 (2009).

    Article  ADS  Google Scholar 

  10. Murthy, S. et al. Feedback from low-luminosity radio galaxies: B2 0258+35. Astron. Astrophys. 629, A58 (2019).

    Article  Google Scholar 

  11. Shulevski, A., Morganti, R., Oosterloo, T. & Struve, C. Recurrent radio emission and gas supply: the radio galaxy B2 0258+35. Astron. Astrophys. 545, A91 (2012).

    Article  ADS  Google Scholar 

  12. Struve, C., Oosterloo, T., Sancisi, R., Morganti, R. & Emonts, B. H. C. Cold gas in massive early-type galaxies: the case of NGC 1167. Astron. Astrophys. 523, A75 (2010).

    Article  ADS  Google Scholar 

  13. Oosterloo, T. et al. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063. Astron. Astrophys. 608, A38 (2017).

    Article  Google Scholar 

  14. Oosterloo, T. et al. ALMA observations of PKS 1549-79: a case of feeding and feedback in a young radio quasar. Astron. Astrophys. 632, A66 (2019).

    Article  Google Scholar 

  15. Holt, J. et al. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: evidence for a high accretion rate and warm outflow. Mon. Not. R. Astron. Soc. 370, 1633–1650 (2006).

    Article  ADS  Google Scholar 

  16. Willott, C. J., Rawlings, S., Blundell, K. M. & Lacy, M. The emission line–radio correlation for radio sources using the 7C Redshift Survey. Mon. Not. R. Astron. Soc. 309, 1017–1033 (1999).

    Article  ADS  Google Scholar 

  17. Cavagnolo, K. W. et al. A relationship between AGN jet power and radio power. Astrophys. J. 720, 1066–1072 (2010).

    Article  ADS  Google Scholar 

  18. Mukherjee, D. et al. The jet–ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 476, 80–95 (2018).

    Article  ADS  Google Scholar 

  19. Capetti, A., Axon, D. J., Macchetto, F., Sparks, W. B. & Boksenberg, A. Radio outflows and the origin of the narrow-line region in Seyfert galaxies. Astrophys. J. 469, 554–563 (1996).

    Article  ADS  Google Scholar 

  20. Wilson, A. S. & Raymond, J. C. Do jet-driven shocks ionize the narrow-line regions of Seyfert galaxies? Astrophys. J. 513, L115–L118 (1999).

    Article  ADS  Google Scholar 

  21. Morganti, R., Oosterloo, T., Oonk, J. B. R., Frieswijk, W. & Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 580, A1 (2015).

    Article  ADS  Google Scholar 

  22. García-Burillo, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 567, A125 (2014).

    Article  Google Scholar 

  23. Venturi, G. et al. MAGNUM survey: compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 648, A17 (2021).

    Article  Google Scholar 

  24. Jarvis, M. E. et al. Prevalence of radio jets associated with galactic outflows and feedback from quasars. Mon. Not. R. Astron. Soc. 485, 2710–2730 (2019).

    Article  ADS  Google Scholar 

  25. Husemann, B. et al. The Close AGN Reference Survey (CARS). A massive multi-phase outflow impacting the edge-on galaxy HE 1353−1917. Astron. Astrophys. 627, A53 (2019).

    Article  Google Scholar 

  26. Alatalo, K. et al. Discovery of an active galactic nucleus driven molecular outflow in the local early-type galaxy NGC 1266. Astrophys. J. 735, 88 (2011).

    Article  ADS  Google Scholar 

  27. Combes, F. et al. ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433. Astron. Astrophys. 558, A124 (2013).

    Article  Google Scholar 

  28. Riffel, R. A., Storchi-Bergmann, T. & Riffel, R. An outflow perpendicular to the radio jet in the Seyfert nucleus of NGC 5929. Astrophys. J. Lett. 780, L24 (2014).

    Article  ADS  Google Scholar 

  29. Rodríguez-Ardila, A. et al. Powerful outflows in the central parsecs of the low-luminosity active galactic nucleus NGC 1386. Mon. Not. R. Astron. Soc. 470, 2845–2860 (2017).

    Article  ADS  Google Scholar 

  30. Fabbiano, G. et al. Deep Chandra observations of ESO 428-G01. III. High-resolution spectral imaging of the ionization cone and radio jet region. Astrophys. J. 865, 83 (2018).

    Article  ADS  Google Scholar 

  31. Gomes, J. M. et al. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies. Astron. Astrophys. 588, A68 (2016).

    Article  Google Scholar 

  32. Mukherjee, D., Bicknell, G. V., Sutherland, R. & Wagner, A. Erratum: Relativistic jet feedback in high-redshift galaxies I. Dynamics. Mon. Not. R. Astron. Soc. 471, 2790–2800 (2017).

    Article  ADS  Google Scholar 

  33. Wagner, A. Y. & Bicknell, G. V. Relativistic jet feedback in evolving galaxies. Astrophys. J. 728, 29 (2011).

    Article  ADS  Google Scholar 

  34. Gaibler, V., Khochfar, S. & Krause, M. Asymmetries in extragalactic double radio sources: clues from 3D simulations of jet–disc interaction. Mon. Not. R. Astron. Soc. 411, 155–161 (2011).

    Article  ADS  Google Scholar 

  35. Best, P. N., Kauffmann, G., Heckman, T. M. & Ivezić, Ž. A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 362, 9–24 (2005).

    Article  ADS  Google Scholar 

  36. Sabater, J. et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 622, A17 (2019).

    Article  Google Scholar 

  37. Morganti, R. & Oosterloo, T. The interstellar and circumnuclear medium of active nuclei traced by H i 21 cm absorption. Astron. Astrophys. Rev. 26, 4 (2018).

    Article  ADS  Google Scholar 

  38. Genel, S. et al. Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 445, 175–200 (2014).

    Article  ADS  Google Scholar 

  39. Sijacki, D. et al. The Illustris simulation: the evolving population of black holes across cosmic time. Mon. Not. R. Astron. Soc. 452, 575–596 (2015).

    Article  ADS  Google Scholar 

  40. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    Article  ADS  Google Scholar 

  41. Crain, R. A. et al. The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 450, 1937–1961 (2015).

    Article  ADS  Google Scholar 

  42. Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    Article  ADS  Google Scholar 

  43. Dubois, Y., Devriendt, J., Slyz, A. & Teyssier, R. Self-regulated growth of supermassive black holes by a dual jet–heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations. Mon. Not. R. Astron. Soc. 420, 2662–2683 (2012).

    Article  ADS  Google Scholar 

  44. Dubois, Y., Gavazzi, R., Peirani, S. & Silk, J. AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies. Mon. Not. R. Astron. Soc. 433, 3297–3313 (2013).

    Article  ADS  Google Scholar 

  45. Talbot, R. Y., Bourne, M. A. & Sijacki, D. Blandford–Znajek jets in galaxy formation simulations: method and implementation. Mon. Not. R. Astron. Soc. 504, 3619–3650 (2021).

    Article  ADS  Google Scholar 

  46. Talbot, R. Y., Sijacki, D. & Bourne, M. A. Blandford–Znajek jets in galaxy formation simulations: exploring the diversity of outflows produced by spin-driven AGN jets. Preprint at https://arxiv.org/abs/2111.01801 (2021).

  47. O’Sullivan, E. et al. Cold gas in group-dominant elliptical galaxies. Astron. Astrophys. 573, A111 (2015).

    Article  Google Scholar 

  48. Bolatto, A. D. et al. The EDGE-CALIFA Survey: interferometric observations of 126 galaxies with CARMA. Astrophys. J. 846, 159 (2017).

    Article  ADS  Google Scholar 

  49. Gomes, J. M. et al. Spiral-like star-forming patterns in CALIFA early-type galaxies. Astron. Astrophys. 585, A92 (2016).

    Article  Google Scholar 

  50. Planck Collaboration et al.Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014).

    Article  Google Scholar 

  51. Greisen, E. W. in Information Handling in Astronomy – Historical Vistas (ed. Heck, A.) 109–125 (Kluwer Academic, 2003).

  52. Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).

    Article  ADS  Google Scholar 

  53. Daddi, E. et al. Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. Lett. 714, L118–L122 (2010).

    Article  ADS  Google Scholar 

  54. Downes, D. & Solomon, P. M. Rotating nuclear rings and extreme starbursts in ultraluminous galaxies. Astrophys. J. 507, 615–654 (1998).

    Article  ADS  Google Scholar 

  55. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  Google Scholar 

  56. Harrison, C. M. et al. AGN outflows and feedback twenty years on. Nat. Astron. 2, 198–205 (2018).

    Article  ADS  Google Scholar 

  57. Rupke, D. S. N. & Veilleux, S. The multiphase structure and power sources of galactic winds in major mergers. Astrophys. J. 768, 75 (2013).

    Article  ADS  Google Scholar 

  58. Ho, L. C., Filippenko, A. V., Sargent, W. L. W. & Peng, C. Y. A search for ‘dwarf’ Seyfert nuclei. IV. Nuclei with broad Hα emission. Astrophys. J. Suppl. Ser. 112, 391–414 (1997).

    Article  ADS  Google Scholar 

  59. Akylas, A. & Georgantopoulos, I. XMM-Newton observations of Seyfert galaxies from the Palomar spectroscopic survey: the X-ray absorption distribution. Astron. Astrophys. 500, 999–1012 (2009).

    Article  ADS  Google Scholar 

  60. Panessa, F. et al. On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies. Astron. Astrophys. 455, 173–185 (2006).

    Article  ADS  Google Scholar 

  61. Godfrey, L. E. H. & Shabala, S. S. Mutual distance dependence drives the observed jet-power–radio-luminosity scaling relations in radio galaxies. Mon. Not. R. Astron. Soc. 456, 1172–1184 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based on the observations carried out under project number S20BH with the IRAM NOEMA interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). We thank the IRAM staff for making these observations possible. S.M. thanks O. Feher for the help with data reduction. We thank G. Fabbiano and M. Baloković for sharing the results from the Chandra/NuSTAR observations prior to publication, and M. Giroletti for sharing the FITS image of the 8.5 GHz radio continuum emission. The simulations in this paper were undertaken with the assistance of resources from the National Computational Infrastructure (NCI Australia), an NCRIS-enabled capability supported by the Australian government. A.Y.W. is supported by JSPS KAKENHI grant no. 19K03862.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and R.M. conceived the project. S.M., R.M., P.G. and T.O. wrote the observing proposal. S.M. reduced the data. S.M., R.M. and T.O. carried out the analysis. A.Y.W., D.M. and G.B. contributed to the simulations. S.M., R.M. and A.Y.W. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Suma Murthy or Raffaella Morganti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Chiara Feruglio and the other, anonymous, reviewer(s) for their contribution to the peer review of thiswork.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, S., Morganti, R., Wagner, A.Y. et al. Cold gas removal from the centre of a galaxy by a low-luminosity jet. Nat Astron 6, 488–495 (2022). https://doi.org/10.1038/s41550-021-01596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01596-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing