Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contemporary formation of early Solar System planetesimals at two distinct radial locations


The formation of planetesimals is expected to occur via particle-gas instabilities that concentrate dust into self-gravitating clumps1,2,3. Triggering these instabilities requires the prior pile-up of dust in the protoplanetary disk4,5. This has been successfully modelled exclusively at the disk’s snowline6,7,8,9, whereas rocky planetesimals in the inner disk were only obtained by assuming either unrealistically large particle sizes10,11 or an enhanced global disk metallicity12. However, planetesimal formation solely at the snowline is difficult to reconcile with the early and contemporaneous formation of iron meteorite parent bodies with distinct oxidation states13,14 and isotopic compositions15, indicating formation at different radial locations in the disk. Here, by modelling the evolution of a disk with ongoing accretion of material from the collapsing molecular cloud16,17,18, we show that planetesimal formation may have been triggered within the first 0.5 million years by dust pile-up at both the snowline (at ~5 au) and the silicate sublimation line (at ~1 au), provided turbulent diffusion was low. Particle concentration at ~1 au is due to the early outward radial motion of gas19 and is assisted by the sublimation and recondensation of silicates20,21. Our results indicate that, although the planetesimals at the two locations formed about contemporaneously, those at the snowline accreted a large fraction of their mass (~60%) from materials delivered to the disk in the first few tens of thousands of years, whereas this fraction is only 30% for the planetesimals formed at the silicate line. Thus, provided that the isotopic composition of the delivered material changed with time22, these two planetesimal populations should have distinct isotopic compositions, consistent with observations15.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The radial distribution of the disk’s temperature at different times.
Fig. 2: The density ratio between dust and gas on the disk’s midplane as a function of heliocentric distance and time.
Fig. 3: The radial mass distribution of the planetesimal populations formed in different time intervals.
Fig. 4: The relative proportions of early infalling material among the disk’s refractory elements, as a function of heliocentric distance at different times.

Data availability

The compiled code, the input file and the ascii output files of our reference simulation including silicate condensation/sublimation (one file per output timestep (104 yr) for a total of 100 files) are provided at: A readme file describes the content of each file.

Code availability

The code for the calculation of the disk evolution is available on request from the corresponding author.


  1. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).

    ADS  Google Scholar 

  2. Cuzzi, J. N., Hogan, R. C. & Shariff, K. Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008).

    ADS  Google Scholar 

  3. Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    ADS  Google Scholar 

  4. Drążkowska, J. & Dullemond, C. P. Can dust coagulation trigger streaming instability? Astron. Astrophys. 572, A78 (2014).

    ADS  Google Scholar 

  5. Yang, C.-C., Johansen, A. & Carrera, D. Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, A80 (2017).

    Google Scholar 

  6. Ida, S. & Guillot, T. Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. Astron. Astrophys. 596, L3 (2016).

    ADS  Google Scholar 

  7. Schoonenberg, D. & Ormel, C. W. Planetesimal formation near the snowline: in or out? Astron. Astrophys. 602, A21 (2017).

    ADS  Google Scholar 

  8. Drążkowska, J. & Alibert, Y. Planetesimal formation starts at the snow line. Astron. Astrophys. 608, A92 (2017).

    ADS  Google Scholar 

  9. Drążkowska, J. & Dullemond, C. P. Planetesimal formation during protoplanetary disk buildup. Astron. Astrophys. 614, A62 (2018).

    ADS  Google Scholar 

  10. Drążkowska, J., Alibert, Y. & Moore, B. Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016).

    ADS  Google Scholar 

  11. Charnoz, S. et al. Planetesimal formation in an evolving protoplanetary disk with a dead zone. Astron. Astrophys. 627, A50 (2019).

    Google Scholar 

  12. Schoonenberg, D., Ormel, C. W. & Krijt, S. A Lagrangian model for dust evolution in protoplanetary disks: formation of wet and dry planetesimals at different stellar masses. Astron. Astrophys. 620, A134 (2018).

    ADS  Google Scholar 

  13. Chabot, N. L. Composition of metallic cores in the early solar system. 49th Lunar and Planetary Science Conference 2083 (ed. LPI) (2018).

  14. Spitzer, F., Burkhardt, C., Nimmo, F. & Kleine, T. Nucleosynthetic Pt isotope anomalies and the Hf-W chronology of core formation in inner and outer solar system planetesimals. Earth Planet. Sci. Lett. 576, 117211 (2021).

    Google Scholar 

  15. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    ADS  Google Scholar 

  16. Hueso, R. & Guillot, T. Evolution of protoplanetary disks: constraints from DM Tauri and GM Aurigae. Astron. Astrophys. 442, 703–725 (2005).

    ADS  Google Scholar 

  17. Pignatale, F. C., Charnoz, S., Chaussidon, M. & Jacquet, E. Making the planetary material diversity during the early assembling of the solar system. Astrophys. J. 867, L23 (2018).

    ADS  Google Scholar 

  18. Baillié, K., Marques, J. & Piau, L. Building protoplanetary disks from the molecular cloud: redefining the disk timeline. Astron. Astrophys. 624, A93 (2019).

    ADS  Google Scholar 

  19. Batygin, K. & Morbidelli, A. Formation of giant planet satellites. Astrophys. J. 894, 143 (2020).

    ADS  Google Scholar 

  20. Aguichine, A., Mousis, O., Devouard, B. & Ronnet, T. Rocklines as cradles for refractory solids in the protosolar nebula. Astrophys. J. 901, 97 (2020).

    ADS  Google Scholar 

  21. Miyazaki, Y. & Korenaga, J. Dynamic evolution of major element chemistry in protoplanetary disks and its implications for Earth-enstatite chondrite connection. Icarus 361, 114368 (2021).

    Google Scholar 

  22. Nanne, J. A. M., Nimmo, F., Cuzzi, J. N. & Kleine, T. Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019).

    ADS  Google Scholar 

  23. Appelgren, J., Lambrechts, M. & Johansen, A. Dust clearing by radial drift in evolving protoplanetary discs. Astron. Astrophys. 638, A156 (2020).

    ADS  Google Scholar 

  24. Pinte, C. et al. Dust and gas in the disk of HL Tauri: surface density, dust settling, and dust-to-gas ratio. Astrophys. J. 816, 25 (2016).

    ADS  Google Scholar 

  25. Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. 869, L46 (2018).

    ADS  Google Scholar 

  26. Lee, Y. N., Charnoz, S. & Hennebelle, P. Protoplanetary disk formation from the collapse of a prestellar core. Astron. Astrophys. 648, A101 (2021).

    Google Scholar 

  27. Güttler, C., Blum, J., Zsom, A., Ormel, C. W. & Dullemond, C. P. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513. (2010).

  28. Gole, D. A., Simon, J. B., Li, R., Youdin, A. N. & Armitage, P. J. Turbulence regulates the rate of planetesimal formation via gravitational collapse. Astrophys. J. 904, 132 (2020).

    ADS  Google Scholar 

  29. Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).

    ADS  Google Scholar 

  30. Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    ADS  Google Scholar 

  31. Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration: hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, A 152 (2021).

    Google Scholar 

  32. Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A. & Rubie, D. C. Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth Planet. Sci. Lett. 538, 116220 (2020).

    Google Scholar 

  33. Tornabene, H. A., Ash, R. D. & Walker, R. J. New insights to the genetics, formation and crystallization history of group IC iron meteorites. 52nd Lunar Planetary Science Conference 2548. LPI (2021).

  34. Hilton, C. D., Ash, R. D. & Walker, R. J. Crystallization histories of the group IIF iron meteorites and Eagle Station pallasites. Meteorit. Planet. Sci. 55, 2570–2586 (2020).

    ADS  Google Scholar 

  35. Stewart, S. T. et al. 2019. Collapsing impact vapor plume model for chondrule and chondrite formation. 50th Annual Lunar and Planetary Science Conference. LPI. (2019).

  36. Lichtenberg, T., Drążkowska, J., Schönbächer, M., Golabek, G. J. & Hand, T. O. Bifurcation of planetary building blocks during Solar System formation. Science 371, 365–370 (2020).

    ADS  Google Scholar 

  37. Chiang, E. & Youdin, A. N. Forming planetesimals in solar and extrasolar nebulae. Ann. Rev. Earth Planet. Sci. 38, 493–522 (2010).

    ADS  Google Scholar 

  38. Dullemond, C. Theoretical Models of the Structure of Protoplanetary Disks. Lecture notes. Heidelberg Univ. (2013).

  39. Bitsch, B., Morbidelli, A., Lega, E. & Crida, A. Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. Astron. Astrophys. 564, A135 (2014).

    ADS  Google Scholar 

  40. Kley, W., Bitsch, B. & Klahr, H. Planet migration in three-dimensional radiative discs. Astron. Astrophys. 506, 971–987 (2009).

    ADS  MATH  Google Scholar 

  41. Kley, W. Radiation hydrodynamics of the boundary layer in accretion disks. I. Numerical methods. Astron. Astrophys. 208, 98–110 (1989).

    ADS  Google Scholar 

  42. Rafikov, R. R. Viscosity prescription for gravitationally unstable accretion disks. Astrophys. J. 804, 62 (2015).

    ADS  Google Scholar 

  43. Birnstiel, T., Fang, M. & Johansen, A. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016).

    ADS  Google Scholar 

  44. Ormel, C. W. An atmospheric structure equation for grain growth. Astrophys. J. 789, L18 (2014).

    ADS  Google Scholar 

  45. Gonzalez, J.-F., Laibe, G. & Maddison, S. T. Self-induced dust traps: overcoming planet formation barriers. Mon. Not. R. Astron. Soc. 467, 1984–1996 (2017).

    ADS  Google Scholar 

  46. Carballido, A., Stone, J. M. & Pringle, J. E. Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc. Mon. Not. R. Astron. Soc. 358, 1055–1060 (2005).

    ADS  Google Scholar 

  47. Hyodo, R., Ida, S. & Charnoz, S. Formation of rocky and icy planetesimals inside and outside the snow line: effects of diffusion, sublimation, and back-reaction. Astron. Astrophys. 629, A90 (2019).

    ADS  Google Scholar 

  48. Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B. & Kleine, T. Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019).

    ADS  Google Scholar 

  49. Brennecka, G. A. et al. Astronomical context of Solar System formation from molybdenum isotopes in meteorite inclusions. Science 370, 837–840 (2020).

    ADS  Google Scholar 

  50. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    ADS  Google Scholar 

Download references


A.M. and S.C. acknowledge support from programme ANR-20-CE49-0006 (ANR DISKBUILD). The work presented here has been performed in preparation for the proposal HolyEarth by A.M. and T.K., which has been funded by the European Research Council (grant No. 101019380). The authors thank R. Deienno and C. Ormel for constructive and detailed comments.

Author information

Authors and Affiliations



A.M. conceived the project, wrote the code, ran the simulations and led the writing of the manuscript. K. Baillié wrote an earlier version of the code. K. Baillié, S.C. and T.G. contributed with their experience on disk evolution. K. Batygin stressed the importance of the radial expansion of the disk. D.C.R. and T.K. provided their experience on the chemical and isotopic composition of meteorites, which allowed for testing the model against measured constraints. All authors contributed to writing the manuscript and discussing the significance of the results.

Corresponding author

Correspondence to A. Morbidelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Rogerio Dienno, Chris Ormel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Surface density of the disk.

Surface density of the disk as a function of heliocentric distance at different times.

Extended Data Fig. 2 Turbulent parameter α.

Turbulent parameter α, for the nominal simulation presented in the main text.

Extended Data Fig. 3 total masses of rocky and icy planetesimals.

total masses of rocky and icy planetesimals for 4 values of αmin and two values of Qlim.

Extended Data Fig. 4 Fraction of early material in CC and NC according to isotopic constraints.

Relation between fraction of early material in CC and NC as given by Ti and Mo isotope anomalies in meteorites. The thick solid line assumes the average value for NC meteorites ε50TiNC = –1 while the thin line assumes ε50TiNC = – 2 (that is the extreme value observed in NC). Orange-shaded area indicates the predicted fractions of our model: 0.275-0.3 for NC planetesimals and 0.450.70 for CC planetesimals.

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–4 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morbidelli, A., Baillié, K., Batygin, K. et al. Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nat Astron 6, 72–79 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing