Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum sensor networks as exotic field telescopes for multi-messenger astronomy


Multi-messenger astronomy, the coordinated observation of different classes of signals that originate from the same astrophysical event, provides a wealth of information about astrophysical processes1. So far, multi-messenger astronomy has correlated signals from known fundamental forces and standard model particles like electromagnetic radiation, neutrinos and gravitational waves. Many of the open questions of modern physics suggest the existence of exotic fields with light quanta (with masses 1 eV c−2). Quantum sensor networks could be used to search for astrophysical signals that are predicted by theories beyond the standard model2 that address these questions. Here, we show that networks of precision quantum sensors that, by design, are shielded from or are insensitive to conventional standard model physics signals can be a powerful tool for multi-messenger astronomy. We consider the case in which high-energy astrophysical events produce intense bursts of exotic low-mass fields (ELFs), and we propose a novel model for the potential detection of an ELF signal on the basis of general assumptions. We estimate ELF signal amplitudes, delays, rates and distances of gravitational-wave sources to which global networks of atomic magnetometers3,4,5 and atomic clocks6,7,8 could be sensitive. We find that such precision quantum sensor networks can function as ELF telescopes to detect signals from sources that generate ELF bursts of sufficient intensity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Effect of dispersion on the expected ELF signal at a precision quantum sensor.
Fig. 2: Time–frequency decomposition for power spectrum of an ELF signal at a sensor.
Fig. 3: Projected atomic-clock sensitivity to ELFs that are plausibly emitted during the BNS merger GW170817.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Budker, D. & Jackson Kimball, D. F. (eds) Optical Magnetometry (Cambridge Univ. Press, 2013).

  4. 4.

    Pospelov, M. et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Afach, S. et al. Characterization of the global network of optical magnetometers to search for exotic physics (GNOME). Phys. Dark Universe 22, 162180 (2018).

    Article  Google Scholar 

  6. 6.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    Article  Google Scholar 

  8. 8.

    Roberts, B. M. et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8, 1195 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Baumann, D., Chia, H. S. & Porto, R. A. Probing ultralight bosons with binary black holes. Phys. Rev. D 99, 044001 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Raffelt, G. G. Particle physics from stars. Annu. Rev. Nucl. Part. Sci. 49, 163–216 (1999).

    ADS  Article  Google Scholar 

  11. 11.

    Tkachev, I. I. Fast radio bursts and axion miniclusters. JETP Lett. 101, 1–6 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Loeb, A. Lets talk about black hole singularities. Preprint at (2018).

  13. 13.

    Arvanitaki, A., Baryakhtar, M., Dimopoulos, S., Dubovsky, S. & Lasenby, R. Black hole mergers and the QCD axion at Advanced LIGO. Phys. Rev. D 95, 043001 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Baryakhtar, M., Lasenby, R. & Teo, M. Black hole superradiance signatures of ultralight vectors. Phys. Rev. D 96, 035019 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Fujii, Y. & Maeda, K. The Scalar–Tensor Theory of Gravitation (Cambridge Univ. Press, 2007).

  16. 16.

    Franciolini, G., Hui, L., Penco, R., Santoni, L. & Trincherini, E. Effective field theory of black hole quasinormal modes in scalar–tensor theories. J. High Energy Phys. 2019, 127 (2019).

    MathSciNet  Article  Google Scholar 

  17. 17.

    Barausse, E., Palenzuela, C., Ponce, M. & Lehner, L. Neutron-star mergers in scalar–tensor theories of gravity. Phys. Rev. D 87, 081506 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Krause, D. E., Kloor, H. T. & Fischbach, E. Multipole radiation from massive fields: application to binary pulsar systems. Phys. Rev. D 49, 6892–6906 (1994).

    ADS  Article  Google Scholar 

  19. 19.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Abbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Jackson Kimball, D. F. et al. Searching for axion stars and Q-balls with a terrestrial magnetometer network. Phys. Rev. D 97, 043002 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Geraci, A. A., Bradley, C., Gao, D., Weinstein, J. & Derevianko, A. Searching for ultralight dark matter with optical cavities. Phys. Rev. Lett. 123, 31304 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Geraci, A. A. & Derevianko, A. Sensitivity of atom interferometry to ultralight scalar field dark matter. Phys. Rev. Lett. 117, 261301 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Olive, K. A. & Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 043524 (2008).

    ADS  Article  Google Scholar 

  27. 27.

    Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys. 22, 093010 (2020).

    ADS  Article  Google Scholar 

  28. 28.

    Paul, D. Binary neutron star merger rate via the luminosity function of short gamma-ray bursts. Mon. Not. R. Astron. Soc. 477, 4275–4284 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Tino, G. M. et al. SAGE: a proposal for a space atomic gravity explorer. Eur. Phys. J. D 73, 228 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Peskin, M. E. & Schroeder, D. V. An Introduction to Quantum Field Theory (Perseus Books, 1995).

  31. 31.

    Abbott, B. P. et al. GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Jackson, J. D. Classical Electrodynamics 3rd edn (John Wiley, 1999).

  33. 33.

    Anderson, W. G. et al. Excess power statistic for detection of burst sources of gravitational radiation. Phys. Rev. D 63, 042003 (2001).

    ADS  Article  Google Scholar 

  34. 34.

    Maggiore, M. Gravitational Waves. Volume 1: Theory and Experiments (Oxford Univ. Press, 2008).

  35. 35.

    Roberts, B. M. et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8, 1195 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Derevianko, A. Detecting dark-matter waves with a network of precision-measurement tools. Phys. Rev. A 97, 042506 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Romano, J. D. & Cornish, N. J. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev. Relativ. 20, 2 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Groth, E. J. Probability distributions related to power spectra. Astrophys. J. Suppl. Ser. 29, 285–302 (1975).

    ADS  Article  Google Scholar 

  39. 39.

    Panelli, G., Roberts, B. M. & Derevianko, A. Applying matched-filter technique to the search for dark matter transients with networks of quantum sensors. EPJ Quantum Technol. 7, 5 (2020).

    Article  Google Scholar 

  40. 40.

    Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).

    ADS  Article  Google Scholar 

  42. 42.

    Derevianko, A., Dzuba, V. A. & Flambaum, V. V. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. Phys. Rev. Lett. 109, 180801 (2012).

    ADS  Article  Google Scholar 

  43. 43.

    Dzuba, V. A. & Flambaum, V. V. Highly charged ions for atomic clocks and search for variation of the fine structure constant. Hyperfine Interact. 236, 7986 (2015).

    Article  Google Scholar 

  44. 44.

    Savalle, E. et al. Novel approaches to dark-matter detection using space-time separated clocks. Preprint at (2019).

  45. 45.

    Arvanitaki, A., Dimopoulos, S. & Van Tilburg, K. Sound of dark matter: searching for light scalars with resonant-mass detectors. Phys. Rev. Lett. 116, 031102 (2016).

    ADS  Article  Google Scholar 

  46. 46.

    Sibiryakov, S., Sørensen, P. & Yu, T. -T. BBN constraints on universally-coupled ultralight scalar dark matter. Preprint at (2020).

  47. 47.

    Jackson Kimball, D. F. Nuclear spin content and constraints on exotic spin-dependent couplings. New J. Phys. 17, 073008 (2015).

    Article  Google Scholar 

  48. 48.

    Chang, J. H., Essig, R. & McDermott, S. D. Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. J. High Energy Phys. 2018, 51 (2018).

    Article  Google Scholar 

Download references


We thank L. Bernard, G. Blewitt, S. Bonazzola, D. Budker, A. Furniss, S. Gardner, E. Gourgoulhon, K. Grimm, J. E. Lawler, R. Plotkin, M. Pospelov, J. Pradler, B. Safdi, A. P. Sen, J. E. Stalnaker and C. Will for discussions. This work was supported in part by the European Research Council under the European Unions Horizon 2020 research and innovation programme (grant no. 695405), the DFG Reinhart Koselleck project, the Polish National Science Centre (grant no. 2015/19/B/ST2/02129), the Simons and Heising-Simons Foundations, and by the US National Science Foundation (grant nos. PHY-1707875, PHY-1806672 and PHY-1912465).

Author information




A.D., C.D. and D.F.J.K. conceived the project. All authors contributed to the development of the methodology. A.D., C.D., D.F.J.K. and I.A.S. wrote the original draft of the paper. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Andrei Derevianko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Guglielmo Tino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Supplementary Figs. 1 and 2, Supplementary Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dailey, C., Bradley, C., Jackson Kimball, D.F. et al. Quantum sensor networks as exotic field telescopes for multi-messenger astronomy. Nat Astron 5, 150–158 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing