Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new population of dust from stellar explosions among meteoritic stardust

Abstract

Primitive Solar System materials host small amounts of refractory dust grains predating the formation of the Sun and its planetary system. These ‘presolar’ grains condensed in the ejecta of evolved stars, novae and supernovae1. Their highly anomalous isotopic compositions cannot be explained by chemical or physical processes within the Solar System; instead, they represent the nucleosynthetic signatures of their stellar parents. Among this ‘true stardust’, silicates are the most abundant type of dust available for single-grain analyses2, with typical sizes of approximately 150 nm (ref. 3). Unlike presolar silicon carbides, aluminium oxides or graphites, which can be separated chemically from meteorites, presolar silicates have to be identified in situ, as they would be destroyed by extraction agents. Instrumental restrictions have constrained almost all previous magnesium isotopic measurements to presolar aluminium oxides, and the contribution of radiogenic 26Mg from 26Al decay has precluded unambiguous conclusions about their initial magnesium isotopes. Recent technical advances have enabled the undisturbed in situ investigation of magnesium isotopes in presolar silicates with unprecedented spatial resolution (<150 nm). Here we show that a minor but important fraction of silicate stardust believed to come from red giant stars has a supernova origin instead, if hydrogen ingestion occurred during the pre-supernova phase, making the supernova dust fraction among >200-nm-sized presolar silicates significantly higher than previously inferred1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Oxygen three-isotope plot showing the presolar silicate grains from this study.
Fig. 2: Mg isotopic compositions of group 1 presolar silicates and oxides.
Fig. 3: Oxygen three-isotope plot showing the presolar silicates from this study.
Fig. 4: Silicon three-isotope plot for the 25Mg-rich presolar silicates.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Zinner, E. in Meteorites and Cosmochemical Processes Vol. 1 (ed. Davis, A. M.) 181–213 (Elsevier, 2014).

  2. 2.

    Floss, C. & Haenecour, P. Presolar silicate grains: abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem. J. 50, 3–25 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Hoppe, P., Leitner, J. & Kodolányi, J. The stardust abundance in the local interstellar cloud at the birth of the Solar System. Nat. Astron. 1, 617–620 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Hoppe, P., Leitner, J. & Kodolányi, J. New insights into the Galactic chemical evolution of magnesium and silicon isotopes from studies of silicate stardust. Astrophys. J. 869, 47–59 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Nittler, L. R., Alexander, C. M. O’D., Gao, X., Walker, R. M. & Zinner, E. Stellar sapphires: the properties and origins of presolar Al2O3 in meteorites. Astrophys. J. 483, 475–495 (1997).

    ADS  Article  Google Scholar 

  6. 6.

    Nittler, L. R. et al. Aluminum-, calcium- and titanium-rich oxide stardust in ordinary chondrite meteorites. Astrophys. J. 682, 1450–1478 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Cristallo, S., Straniero, O., Piersanti, L. & Gobrecht, D. Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the pH-FRUITY interface. Astrophys. J. Suppl. Ser. 219, 40–60 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Zinner, E. et al. Oxygen, magnesium and chromium isotopic ratios of presolar spinel grains. Geochim. Cosmochim. Acta 69, 4149–4165 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    Palmerini, S., La Cognata, M., Cristallo, S. & Busso, M. Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys. J. 729, 3–23 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Lugaro, M. et al. Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nat. Astron. 1, 0027 (2017).

    Article  Google Scholar 

  11. 11.

    Nguyen, A. N. & Messenger, S. Resolving the stellar sources of isotopically rare presolar silicate grains through Mg and Fe isotopic analyses. Astrophys. J. 784, 149–163 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Hoppe, P., Leitner, J. & Kodolányi, J. New constraints on the abundances of silicate and oxide stardust from supernovae in the Acfer 094 meteorite. Astrophys. J. 808, L9–L14 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Gyngard, F., Nittler, L. R., Zinner, E., Jose, J. & Cristallo, S. New reaction rates and implications for nova nucleosynthesis and presolar grains. Lunar Planet. Sci. 42, 2675 (2011).

    ADS  Google Scholar 

  14. 14.

    Leitner, J., Kodolányi, J., Hoppe, P. & Floss, C. Laboratory analysis of presolar silicate stardust from a nova. Astrophys. J. 754, L41–L46 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Karakas, A. I. & Lattanzio, J. C. Production of aluminium and the heavy magnesium isotopes in asymptotic giant branch stars. Publ. Astron. Soc. Aust. 20, 279–293 (2003).

    ADS  Article  Google Scholar 

  16. 16.

    Karakas, A. I. & Lugaro, M. Stellar yields from metal-rich asymptotic giant branch models. Astrophys. J. 825, 26–47 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Pignatari, M. et al. NuGrid stellar data set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01. Astrophys. J. Suppl. Ser. 225, 24–77 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    José, J., Hernanz, M., Amari, S., Lodders, K. & Zinner, E. The imprint of nova nucleosynthesis in presolar grains. Astrophys. J. 612, 414–428 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    Pignatari, M. et al. Carbon-rich presolar grains from massive stars: subsolar 12C/13C and 14N/15N ratios and the mystery of 15N. Astrophys. J. 808, L43–L48 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Iliadis, C., Downen, L. N., José, J., Nittler, L. R. & Starrfield, S. On presolar stardust grains from CO classical novae. Astrophys. J. 855, 76–89 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Nittler, L. R. & Hoppe, P. Are presolar silicon carbide grains from novae actually from supernovae? Astrophys. J. 631, L89–L92 (2005).

    ADS  Article  Google Scholar 

  22. 22.

    Liu, N. et al. Stellar origins of extremely 13C- and 15N-enriched presolar SiC grains: novae or supernovae? Astrophys. J. 820, 140–153 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Orlando, S., Miceli, M., Pumo, M. L. & Bocchino, F. Supernova 1987A: a template to link supernovae to their remnants at 10,000 days. Astrophys. J. 810, 168–182 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Harris, M. J. & Lambert, D. L. Oxygen isotopes in the atmospheres of Betelgeuse and Antares. Astrophys. J. 281, 739–745 (1984).

    ADS  Article  Google Scholar 

  25. 25.

    Neilson, H., Lester, J. B. & Haubois, X. Weighing Betelgeuse: measuring the mass of α Orionis from stellar limb-darkening. In 9th Pacific Rim Conference on Stellar Astrophysics ASP Conf. Ser. 451 (eds Qian, S., Leung, K., Zhu, L. & Kwok, S.) 117–122 (ASP, 2011).

  26. 26.

    Kudritzki, R. P. & Reimers, D. On the absolute scale of mass-loss in red giants. II. Circumstellar absorption lines in the spectrum of α Sco B and mass-loss of α Sco A. Astron. Astrophys. 70, 227–239 (1978).

    ADS  Google Scholar 

  27. 27.

    Ramírez, S. V. et al. Stellar iron abundances at the Galactic Center. Astrophys. J. 537, 205–220 (2000).

    ADS  Article  Google Scholar 

  28. 28.

    Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002).

    ADS  Article  Google Scholar 

  29. 29.

    Gehrz, R. D., Truran, J. W., Williams, R. E. & Starrfield, S. Nucleosynthesis in classical novae and its contribution to the interstellar medium. Publ. Astron. Soc. Pac. 110, 3–26 (1998).

    ADS  Article  Google Scholar 

  30. 30.

    Hoppe, P., Cohen, S. & Meibom, A. NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand. Geoanal. Res. 37, 111–154 (2013).

    Article  Google Scholar 

  31. 31.

    Kodolányi, J., Hoppe, P., Gröner, E., Pauly, C. & Mücklich, F. The Mg isotope composition of presolar silicate grains from red giant stars. Geochim. Cosmochim. Acta 140, 577–605 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Leitner, J., Hoppe, P., Floss, C., Hillion, F. & Henkel, T. Correlated nanoscale characterization of a unique complex oxygen-rich stardust grain: implications for circumstellar dust formation. Geochim. Cosmochim. Acta 221, 255–274 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Nittler, L. R., Alexander, C. M. O’D., Liu, N. & Wang, J. Extremely 54Cr- and 50Ti-rich presolar oxide grains in a primitive meteorite: formation in rare types of supernovae and implications for the astrophysical context of Solar System birth. Astrophys. J. 856, L24–L30 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Leitner, J., Vollmer, C., Floss, C., Zipfel, J. & Hoppe, P. Ancient stardust in fine-grained chondrule dust rims from carbonaceous chondrites. Earth Planet. Sci. Lett. 434, 117–128 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    José, J. & Hernanz, M. Nucleosynthesis in classical novae: CO versus ONe white dwarfs. Astrophys. J. 494, 680–690 (1998).

    ADS  Article  Google Scholar 

  36. 36.

    Woosley, S. E. & Heger, A. Nucleosynthesis and remnants in massive stars of solar metallicity. Phys. Rep. 442, 269–283 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Gröner, P. Schuhmann and A. Sorowka for technical support, the Natural History Museum in Vienna for the loan of the Acfer 094 sample, and NASA JSC for the loan of the EET 92161 sample. US Antarctic meteorite samples were recovered by the Antarctic Search for Meteorites (ANSMET) programme funded by the National Science Foundation and NASA, and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Curation Office at NASA Johnson Space Center. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft (J.L., grant LE3279/1-1) and has made use of NASA’s Astrophysics Data System.

Author information

Affiliations

Authors

Contributions

J.L. conducted the majority of the NanoSIMS work with minor contributions from P.H. J.L. wrote most of the paper with important input from P.H.

Corresponding author

Correspondence to Jan Leitner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Davide Lazzati and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1-10, Supplementary Table 1-2, Supplementary references 1-20.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leitner, J., Hoppe, P. A new population of dust from stellar explosions among meteoritic stardust. Nat Astron 3, 725–729 (2019). https://doi.org/10.1038/s41550-019-0788-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing