The properties of broad absorption line outflows based on a large sample of quasars

Abstract

Quasar outflows carry mass, momentum and energy into the surrounding environment, and have long been considered a potential key factor in regulating the growth of supermassive black holes and the evolution of their host galaxies1,2,3,4. A crucial parameter for understanding the origin of these outflows and measuring their influence on their host galaxies is the distance R between the outflow gas and the galaxy centre5,6. Although R has been measured in a number of individual galaxies7,8,9,10,11,12,13,14,15, its distribution remains unknown. Here we report the distributions of R and the kinetic luminosities of quasar outflows, using the statistical properties of broad absorption line variability in a sample of 915 quasars from the Sloan Digital Sky Survey. The mean and standard deviation of the distribution of R are 101.4±0.5 parsecs. The typical outflow distance in this sample is tens of parsecs, which is beyond the theoretically predicted location (0.01 to 0.1 parsecs) at which the accretion disk line-driven wind is launched16,17, but is smaller than the scales of most outflows that are derived using the excited-state absorption lines7,8,9,10,11,12,13,14. The typical value of the mass flow rate is tens to a hundred solar masses per year, or several times the accretion rate. The typical kinetic-to-bolometric luminosity ratio is a few per cent, indicating that outflows are energetic enough to influence the evolution of their host galaxies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The fraction curve of BAL variabilities and the inferred recombination timescales distribution in the SDSS sample.
Fig. 2: Distributions of the properties of the BAL outflows at different ionizing parameters.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Scannapieco, E. & Oh, S. P. Quasar feedback: the missing link in structure formation. Astrophys. J. 608, 62 (2004).

    ADS  Article  Google Scholar 

  2. 2.

    Murray, N., Quataert, E. & Thompson, T. A. On the maximum luminosity of galaxies and their central black holes: feedback from momentum-driven winds. Astrophys. J. 618, 569 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Ciotti, L., Ostriker, J. P. & Proga, D. Feedback from central black holes in elliptical galaxies. I. Models with either radiative or mechanical feedback but not both. Astrophys. J. 699, 89 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Ostriker, J. P., Choi, E., Ciotti, L., Novak, G. S. & Proga, D. Momentum driving: which physical processes dominate active galactic nucleus feedback? Astrophys. J. 722, 642 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    Arav, N. et al. Measuring column densities in quasar outflows: VLT observations of QSO 2359–1241. Astrophys. J. 681, 954 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Moe, M., Arav, N., Bautista, M. A. & Korista, K. T. Quasar outflow contribution to AGN feedback: observations of QSO SDSS J0838+ 2955. Astrophys. J. 706, 525 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Hamann, F. et al. A high-velocity narrow absorption line outflow in the quasar J212329.46-005052.9. Mon. Not. R. Astron. Soc. 410, 1957–1974 (2011).

    ADS  Google Scholar 

  10. 10.

    Borguet, B. C., Edmonds, D., Arav, N., Dunn, J. & Kriss, G. A. A 10 kpc scale Seyfert galaxy outflow: HST/COS observations of IRAS F22456–5125. Astrophys. J. 751, 107 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Arav, N. et al. Anatomy of the AGN in NGC 5548. II. The spatial, temporal, and physical nature of the outflow from HST/COS observations. Astron. Astrophys. 577, A37 (2015).

    Article  Google Scholar 

  12. 12.

    Chamberlain, C., Arav, N. & Benn, C. Strong candidate for AGN feedback: VLT/X-shooter observations of BALQSO SDSS J0831+ 0354. Mon. Not. R. Astron. Soc. 450, 1085–1093 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Arav, N. et al. Evidence that 50% of BALQSO outflows are situated at least 100 pc from the central source. Astrophys. J. 857, 60 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Xu, X., Arav, N., Miller, T. & Benn, C. VLT/X-shooter survey of BAL quasars: large distance scale and AGN feedback. Preprint at https://arxiv.org/abs/1805.01544 (2018).

  15. 15.

    He, Z., Liu, G., Wang, T., Yang, C. & Sheng, Z. Leaked Lyα emission: an indicator of the size of quasar absorption outflows. Astrophys. J. 839, 77 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Murray, N., Chiang, J., Grossman, S. & Voit, G. Accretion disk winds from active galactic nuclei. Astrophys. J. 451, 498 (1995).

    ADS  Article  Google Scholar 

  17. 17.

    Proga, D., Stone, J. M. & Kallman, T. R. Dynamics of line-driven disk winds in active galactic nuclei. Astrophys. J. 543, 686 (2000).

    ADS  Article  Google Scholar 

  18. 18.

    Gibson, R. R., Brandt, W., Gallagher, S. & Schneider, D. P. X-ray insights into the physics of mini-BAL quasar outflows. Astrophys. J. 696, 924 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T. & Belokurov, V. A strong redshift dependence of the broad absorption line quasar fraction. Mon. Not. R. Astron. Soc. 410, 860–884 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Capellupo, D. M., Hamann, F., Shields, J. C., Rodríguez Hidalgo, P. & Barlow, T. A. Variability in quasar broad absorption line outflows—I. Trends in the short-term versus long-term data. Mon. Not. R. Astron. Soc. 413, 908–920 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Capellupo, D. M., Hamann, F., Shields, J. C., Rodríguez Hidalgo, P. & Barlow, T. A. Variability in quasar broad absorption line outflows—II. Multi-epoch monitoring of Si iv and C iv broad absorption line variability. Mon. Not. R. Astron. Soc. 422, 3249–3267 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Filiz, Ak,N. et al. Broad absorption line disappearance on multi-year timescales in a large quasar sample. Astrophys. J. 757, 114 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Filiz, Ak,N. et al. Broad absorption line variability on multi-year timescales in a large quasar sample. Astrophys. J. 777, 168 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    He, Z.-C., Bian, W.-H., Ge, X. & Jiang, X.-L. Variability of QSOs with variable regions in broad absorption troughs from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 454, 3962–3976 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Hemler, Z. S. et al. The Sloan Digital Sky Survey reverberation mapping project: systematic investigations of short-timescale CIV broad absorption line variability. Preprint at https://arxiv.org/abs/1811.00010 (2018).

  26. 26.

    Wang, T., Yang, C., Wang, H. & Ferland, G. Evidence for photoionization-driven broad absorption line variability. Astrophys. J. 814, 150 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    He, Z. et al. Variation of ionizing continuum: the main driver of broad absorption line variability. Astrophys. J. Suppl. Ser. 229, 22 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Barlow, T. A. et al. Broad absorption-line time variability in the QSO CSO 203. Astrophys. J. 397, 81–87 (1992).

    ADS  Article  Google Scholar 

  29. 29.

    Krolik, J. H. & Kriss, G. A. Observable properties of X-ray heated winds in AGN: warm reflectors and warm absorbers. Astrophys. J. 447, 512 (1995).

    ADS  Article  Google Scholar 

  30. 30.

    Nomura, M. & Ohsuga, K. Line-driven disk wind model for ultra-fast outflows in active galactic nuclei—scaling with luminosity. Mon. Not. R. Astron. Soc. 465, 2873–2879 (2016).

  31. 31.

    MacLeod, C. L. et al. Modeling the time variability of SDSS Stripe 82 quasars as a damped random walk. Astrophys. J. 721, 1014 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Kelly, B. C., Bechtold, J. & Siemiginowska, A. Are the variations in quasar optical flux driven by thermal fluctuations? Astrophys. J. 698, 895 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Kozłowski, S. et al. Quantifying quasar variability as part of a general approach to classifying continuously varying sources. Astrophys. J. 708, 927 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Guo, H., Wang, J., Cai, Z. & Sun, M. How far is quasar UV/optical variability from a damped random walk at low frequency? Astrophys. J. 847, 132 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey data release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).

    ADS  Article  Google Scholar 

  36. 36.

    Pâris, I. et al. The Sloan Digital Sky Survey quasar catalog: twelfth data release. Astron. Astrophys. 597, A79 (2017).

    Article  Google Scholar 

  37. 37.

    Dawson, K. S. et al. The baryon oscillation spectroscopic survey of SDSS-III. Astron. J. 145, 10 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Abolfathi, B. et al. The fourteenth data release of the Sloan Digital Sky Survey: first spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the Apache Point Observatory galactic evolution experiment. Astrophys. J. Suppl. Ser. 235, 42 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Margala, D. et al. Improved spectrophotometric calibration of the SDSS-III Boss quasar sample. Astrophys. J. 831, 157 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Shen, Y. et al. The Sloan Digital Sky Survey reverberation mapping project: technical overview. Astrophys. J. Suppl. Ser. 216, 4 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Arav, N., Korista, K. T., De Kool, M., Junkkarinen, V. T. & Begelman, M. C. Hubble space telescope observations of the broad absorption line quasar PG 0946+ 301. Astrophys. J. 516, 27 (1999).

    ADS  Article  Google Scholar 

  42. 42.

    Hall, P. B. et al. Unusual broad absorption line quasars from the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 141, 267 (2002).

    ADS  Article  Google Scholar 

  43. 43.

    Arav, N., Borguet, B., Chamberlain, C., Edmonds, D. & Danforth, C. Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904. Mon. Not. R. Astron. Soc. 436, 3286–3305 (2013).

    ADS  Article  Google Scholar 

  44. 44.

    Leighly, K. M., Terndrup, D. M., Gallagher, S. C., Richards, G. T. & Dietrich, M. The z = 0.54 loBAL quasar SDSS J085053.12+445122.5: I. Spectral synthesis analysis reveals a massive outflow. Preprint at https://arxiv.org/abs/1808.02441 (2018).

  45. 45.

    Savage, B. D. & Sembach, K. R. The analysis of apparent optical depth profiles for interstellar absorption lines. Astrophys. J. 379, 245–259 (1991).

    ADS  Article  Google Scholar 

  46. 46.

    Rogerson, J. A. et al. Emergence and variability of broad absorption line quasar outflows. Astrophys. J. 862, 22 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Ferland, G. et al. The 2013 release of Cloudy. Rev. Mex. Astron. 49, 137–163 (2013).

    ADS  Google Scholar 

  48. 48.

    Mushotzky, R. F., Edelson, R., Baumgartner, W. & Gandhi, P. Kepler observations of rapid optical variability in active galactic nuclei. Astrophys. J. Lett. 743, L12 (2011).

    ADS  Article  Google Scholar 

  49. 49.

    Kasliwal, V. P., Vogeley, M. S. & Richards, G. T. Are the variability properties of the Kepler AGN light curves consistent with a damped random walk? Mon. Not. R. Astron. Soc. 451, 4328–4345 (2015).

    ADS  Article  Google Scholar 

  50. 50.

    Steenbrugge, K., Feňovčík, M., Kaastra, J., Costantini, E. & Verbunt, F. High-resolution X-ray spectroscopy of the low and high states of the Seyfert 1 galaxy NGC 4051 with Chandra LETGS. Astron. Astrophys. 496, 107–119 (2009).

    ADS  Article  Google Scholar 

  51. 51.

    Detmers, R. et al. Multiwavelength campaign on Mrk 509—III. The 600 ks RGS spectrum: unravelling the inner region of an AGN. Astron. Astrophys. 534, A38 (2011).

    Article  Google Scholar 

  52. 52.

    Mathews, W. G. & Ferland, G. J. What heats the hot phase in active nuclei? Astrophys. J. 323, 456–467 (1987).

    ADS  Article  Google Scholar 

  53. 53.

    Dunn, J. P. et al. The quasar outflow contribution to AGN feedback: VLT measurements of SDSS J0318-0600. Astrophys. J. 709, 611 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Arav, N. et al. Chemical abundances in an AGN environment: X-ray/UV campaign on the Markarian 279 outflow. Astrophys. J. 658, 829 (2007).

    ADS  Article  Google Scholar 

  55. 55.

    Borguet, B. C., Edmonds, D., Arav, N., Benn, C. & Chamberlain, C. BAL phosphorus abundance and evidence for immense ionic column densities in quasar outflows: VLT/X-shooter observations of quasar SDSS J1512+1119. Astrophys. J. 758, 69 (2012).

    ADS  Article  Google Scholar 

  56. 56.

    Borguet, B. C., Arav, N., Edmonds, D., Chamberlain, C. & Benn, C. Major contributor to AGN feedback: VLT X-shooter observations of S iv BALQSO outflows. Astrophys. J. 762, 49 (2013).

    ADS  Article  Google Scholar 

  57. 57.

    Arav, N. et al. Multiwavelength campaign on Mrk 509—X. Lower limit on the distance of the absorber from HST COS and STIS spectroscopy. Astron. Astrophys. 544, A33 (2012).

    Article  Google Scholar 

  58. 58.

    Del Zanna, G., Dere, K., Young, P., Landi, E. & Mason, H. Chianti—an atomic database for emission lines. Version 8. Astron. Astrophys. 582, A56 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the Strategic Priority Research Program ‘The Emergence of Cosmological Structures’ of the Chinese Academy of Sciences (XDB09000000), NSFC (NSFC-11233002, NSFC-11421303, U1431229), National Basic Research Program of China (grant number 2015CB857005), National Science Foundation of China (grant numbers 11373024, 11233003 and 11873032) and the National Key Research and Development Program of China (grant number 2017YFA0402703). Z.H. is supported by the China Scholarship Council (CSC, grant number 201706340030) during his stay at Johns Hopkins University. G.L. is supported by the National Thousand Young Talents Program of China, and acknowledges the National Natural Science Foundation of China (grant numbers 11673020 and 11421303) and the Ministry of Science and Technology of China (National Key Program for Science and Technology Research and Development, grant number 2016YFA0400700). G.M. was supported by the National Natural Science Foundation of China (grant number 11703022), and the Fundamental Research Funds for the Central Universities (grant number WK2030220017). Funding for Sloan Digital Sky Survey IV was provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, the Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, Johns Hopkins University, the Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, the Leibniz Institut für Astrophysik Potsdam (AIP), the Max-Planck-Institut für Astronomie (MPIA Heidelberg), the Max-Planck-Institut für Astrophysik (MPA Garching), the Max-Planck-Institut für Extraterrestrische Physik (MPE), the National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, the United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University and Yale University. (Note that the author initials match those in the author list, so the diphthong initials have been removed.)

Author information

Affiliations

Authors

Contributions

Z.H. presented the idea, made the calculations and wrote the manuscript. T.W., G.L., H.W., W.B., G.M., H.Z. and R.G. discussed the idea and the calculations. Y.X., K.T., T.W., G.L. and J.X. revised the manuscript. All authors discussed and commented on the contents of the paper.

Corresponding authors

Correspondence to Zhicheng He or Tinggui Wang or Guilin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary references 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Z., Wang, T., Liu, G. et al. The properties of broad absorption line outflows based on a large sample of quasars. Nat Astron 3, 265–271 (2019). https://doi.org/10.1038/s41550-018-0669-8

Download citation

Further reading