Article | Published:

Observational signatures of massive black hole formation in the early Universe


Space telescope observations of massive black holes during their formation may be key to understanding the origin of supermassive black holes and high-redshift quasars. To create diagnostics for their detection and confirmation, we study a simulation of a nascent massive ‘direct-collapse’ black hole that induces a wave of nearby massive metal-free star formation, unique to this seeding scenario and to very high redshifts. Here we describe a series of distinct colours and emission line strengths, dependent on the relative strength of star formation and black hole accretion. We predict that the forthcoming James Webb Space Telescope might be able to detect and distinguish a young galaxy that hosts a direct-collapse black hole in this configuration at redshift 15 with as little as a 20,000-second total exposure time across four filters, critical for constraining the seeding mechanisms and early growth rates of supermassive black holes. We also find that a massive seed black hole produces strong, H2-dissociating Lyman–Werner radiation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The radiative transfer pipeline uses the publicly available Hyperion (, Cloudy (, Yggdrasil ( and FSPS ( codes. Prior work23,30 exhaustively describes the steps required to build and integrate the pipeline. Enzo is available at (

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Fan, X. et al. Constraining the evolution of the ionizing background and the epoch of reionization with z ~ 6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117–136 (2006).

  2. 2.

    Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

  3. 3.

    Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).

  4. 4.

    Wang, F. et al. A survey of luminous high-redshift quasars with SDSS and WISE. I. Target selection and optical spectroscopy. Astrophys. J. 819, 24 (2016).

  5. 5.

    Bañados, E. et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018).

  6. 6.

    Edgar, R. A review of Bondi–Hoyle–Lyttleton accretion. New Astron. Rev. 48, 843–859 (2004).

  7. 7.

    Yuan, F. & Narayan, R. Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014).

  8. 8.

    Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52–61 (1994).

  9. 9.

    Bromm, V. & Loeb, A. Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003).

  10. 10.

    O’Shea, B. W. & Norman, M. L. Population III star formation in a ΛCDM universe. II. Effects of a photodissociating background. Astrophys. J. 673, 14–33 (2008).

  11. 11.

    Dijkstra, M., Haiman, Z., Mesinger, A. & Wyithe, J. S. B. Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes. Mon. Not. R. Astron. Soc. 391, 1961–1972 (2008).

  12. 12.

    Omukai, K. Primordial star formation under far-ultraviolet radiation. Astrophys. J. 546, 635–651 (2001).

  13. 13.

    Machacek, M. E., Bryan, G. L. & Abel, T. Effects of a soft X-ray background on structure formation at high redshift. Mon. Not. R. Astron. Soc. 338, 273–286 (2003).

  14. 14.

    Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

  15. 15.

    Becerra, F., Greif, T. H., Springel, V. & Hernquist, L. E. Formation of massive protostars in atomic cooling haloes. Mon. Not. R. Astron. Soc. 446, 2380–2393 (2015).

  16. 16.

    Bryan, G. L. et al. Enzo: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. 211, 19 (2014).

  17. 17.

    Chon, S., Hirano, S., Hosokawa, T. & Yoshida, N. Cosmological simulations of early black hole formation: halo mergers, tidal disruption, and the conditions for direct collapse. Astrophys. J. 832, 134 (2016).

  18. 18.

    Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).

  19. 19.

    Dijkstra, M., Ferrara, A. & Mesinger, A. Feedback-regulated supermassive black hole seed formation. Mon. Not. R. Astron. Soc. 442, 2036–2047 (2014).

  20. 20.

    Habouzit, M. et al. Black hole formation and growth with non-Gaussian primordial density perturbations. Mon. Not. R. Astron. Soc. 456, 1901–1912 (2016).

  21. 21.

    Visbal, E., Haiman, Z. & Bryan, G. L. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Mon. Not. R. Astron. Soc. 445, 1056–1063 (2014).

  22. 22.

    Regan, J. A. et al. Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nat. Astron. 1, 0075 (2017).

  23. 23.

    Barrow, K. S. S. et al. First light—II. Emission line extinction, population III stars, and X-ray binaries. Mon. Not. R. Astron. Soc. 474, 2617–2634 (2018).

  24. 24.

    Oesch, P. A. et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).

  25. 25.

    Aykutalp, A., Wise, J. H., Spaans, M. & Meijerink, R. Songlines from direct collapse seed black holes: effects of X-rays on black hole growth and stellar populations. Astrophys. J. 797, 139 (2014).

  26. 26.

    Bromm, V. & Loeb, A. The formation of the first low-mass stars from gas with low carbon and oxygen abundances. Nature 425, 812–814 (2003).

  27. 27.

    Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C. & Maeda, K. Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A. 777, 424–458 (2006).

  28. 28.

    O’Shea, B. W., Wise, J. H., Xu, H. & Norman, M. L. Probing the ultraviolet luminosity function of the earliest galaxies with the Renaissance Simulations. Astrophys. J. Lett. 807, L12 (2015).

  29. 29.

    Xu, H., Wise, J. H., Norman, M. L., Ahn, K. & O’Shea, B. W. Galaxy properties and UV escape fractions during the epoch of reionization: results from the Renaissance Simulations. Astrophys. J. 833, 84 (2016).

  30. 30.

    Barrow, K. S. S., Wise, J. H., Norman, M. L., O’Shea, B. W. & Xu, H. First light: exploring the spectra of high-redshift galaxies in the Renaissance Simulations. Mon. Not. R. Astron. Soc. 469, 4863–4878 (2017).

  31. 31.

    Larson, D. et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011).

  32. 32.

    Wise, J. H. & Abel, T. Suppression of H2 cooling in the ultraviolet background. Astrophys. J. 671, 1559–1567 (2007).

  33. 33.

    Stecher, T. P. & Williams, D. A. Photodestruction of hydrogen molecules in H i regions. Astrophys. J. Lett. 149, L29 (1967).

  34. 34.

    Spaans, M. & Silk, J. Pregalactic black hole formation with an atomic hydrogen equation of state. Astrophys. J. 652, 902–906 (2006).

  35. 35.

    Aykutalp, A., Wise, J. H., Meijerink, R. & Spaans, M. The response of metal-rich gas to X-ray irradiation from a massive black hole at high redshift: proof of concept. Astrophys. J. 771, 50 (2013).

  36. 36.

    Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952).

  37. 37.

    Kim, J.-h, Wise, J. H., Alvarez, M. A. & Abel, T. Galaxy formation with self-consistently modeled stars and massive black holes. I. Feedback-regulated star formation and black hole growth. Astrophys. J. 738, 54 (2011).

  38. 38.

    Zdziarski, A. A., Johnson, W. N., Done, C., Smith, D. & McNaron-Brown, K. The average X-ray/gamma-ray spectra of Seyfert galaxies from GINGA and OSSE and the origin of the cosmic X-ray background. Astrophys. J. Lett. 438, L63–L66 (1995).

  39. 39.

    Schleicher, D. R. G., Spaans, M. & Klessen, R. S. Probing high-redshift quasars with ALMA. I. Expected observables and potential number of sources. Astron. Astrophys. 513, A7 (2010).

  40. 40.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

  41. 41.

    Meijerink, R. & Spaans, M. Diagnostics of irradiated gas in galaxy nuclei. I. A far-ultraviolet and X-ray dominated region code. Astron. Astrophys. 436, 397–409 (2005).

  42. 42.

    Mellema, G., Iliev, I. T., Alvarez, M. A. & Shapiro, P. R. C2-ray: a new method for photon-conserving transport of ionizing radiation. New Astron. 11, 374–395 (2006).

  43. 43.

    Wise, J. H. & Abel, T. Enzo + Moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. Mon. Not. R. Astron. Soc. 414, 3458–3491 (2011).

  44. 44.

    Abel, T., Anninos, P., Zhang, Y. & Norman, M. L. Modeling primordial gas in numerical cosmology. New Astron. 2, 181–207 (1997).

  45. 45.

    Ricotti, M., Gnedin, N. Y. & Shull, J. M. Feedback from galaxy formation: production and photodissociation of primordial H2. Astrophys. J. 560, 580–591 (2001).

  46. 46.

    Abel, T., Wise, J. H. & Bryan, G. L. The H ii region of a primordial star. Astrophys. J. Lett. 659, L87–L90 (2007).

  47. 47.

    Wise, J. H., Abel, T., Turk, M. J., Norman, M. L. & Smith, B. D. The birth of a galaxy—II. The role of radiation pressure. Mon. Not. R. Astron. Soc. 427, 311–326 (2012).

  48. 48.

    O’Shea, B. W. & Norman, M. L. Population III star formation in a ΛCDM universe. I. The effect of formation redshift and environment on protostellar accretion rate. Astrophys. J. 654, 66–92 (2007).

  49. 49.

    Ebisawa, K., Życki, P., Kubota, A., Mizuno, T. & Watarai, K.-y Accretion disk spectra of ultraluminous X-ray sources in nearby spiral galaxies and galactic superluminal jet sources. Astrophys. J. 597, 780–797 (2003).

  50. 50.

    Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 Ms Chandra Deep Field-South. Astrophys. J. 825, 7 (2016).

  51. 51.

    Madau, P. & Fragos, T. Radiation backgrounds at cosmic dawn: X-rays from compact binaries. Astrophys. J. 840, 39 (2017).

  52. 52.

    Schaerer, D. On the properties of massive population III stars and metal-free stellar populations. Astron. Astrophys. 382, 28–42 (2002).

  53. 53.

    Zackrisson, E., Rydberg, C.-E., Schaerer, D., Östlin, G. & Tuli, M. The spectral evolution of the first galaxies. I. James Webb Space Telescope detection limits and color criteria for population III galaxies. Astrophys. J. 740, 13 (2011).

  54. 54.

    Ferland, G. J. et al. The 2013 release of Cloudy. Rev. Mex. de Astrono. y Astrofs. 49, 137–163 (2013).

  55. 55.

    Robitaille, T. P. HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. Astron. Astrophys. 536, A79 (2011).

  56. 56.

    Perrin, M. D., Soummer, R., Elliott, E. M., Lallo, M. D. & Sivaramakrishnan, A. in Proc. SPIE 8442, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 84423D (2012).

  57. 57.

    Pontoppidan, K. M. et al. in Proc. SPIE 9910 , Observatory Operations: Strategies, Processes, and Systems VI, 991016 (2016).

  58. 58.

    Pacucci, F. et al. First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. Mon. Not. R. Astron. Soc. 459, 1432–1439 (2016).

  59. 59.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

  60. 60.

    Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z ~ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009).

  61. 61.

    Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).

  62. 62.

    Agarwal, B., Davis, A. J., Khochfar, S., Natarajan, P. & Dunlop, J. S. Unravelling obese black holes in the first galaxies. Mon. Not. R. Astron. Soc. 432, 3438–3444 (2013).

Download references


K.S.S.B. acknowledges support from the Southern Regional Education Board doctoral fellowship. A.A. acknowledges support from LANL LDRD Exploratory Research Grant 20170317ER. A.A. and J.H.W. acknowledge support from National Science Foundation (NSF) grant AST-1333360. J.H.W. acknowledges support from NSF grant AST-1614333, Hubble theory grants HST-AR-13895 and HST-AR-14326, and NASA grant NNX-17AG23G.

Author information

K.S.S.B. developed and implemented the radiative transfer pipeline, performed the analysis and prepared the manuscript. A.A. implemented X-ray-dominated region feedback into Enzo and performed the hydrodynamical simulation. J.H.W. conceived the collaboration and provided technical assistance to both K.S.S.B. and A.A. All authors contributed to the text of the final manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Kirk S. S. Barrow.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Evolution of the halo and the radiation field.
Fig. 2: Evolution of the radiation field over time by source in the rest frame.
Fig. 3: The intrinsic and processed spectra of the DCBH and DCBH-less scenarios.
Fig. 4: J356w – J277w and J200w – J277w colour–colour plot.
Fig. 5: Exposure time needed to confirm a DCBH observation with S/N of 5.