Abstract

Cosmic-ray acceleration has been a long-standing mystery1,2 and, despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful shocks that have been expected to produce high-energy cosmic rays through Fermi acceleration at the shock interface. The accelerated particles should collide with stellar photons or ambient material, producing non-thermal emission observable in X-rays and γ-rays3,4. The supermassive binary star Eta Carinae (η Car) drives the strongest colliding wind shock in the solar neighbourhood5,6. Observations with non-focusing high-energy observatories indicate a high-energy source near η Car, but have been unable to conclusively identify η Car as the source because of their relatively poor angular resolution7,8,9. Here we present direct focussing observations of the non-thermal source in the extremely hard X-ray band, which is found to be spatially coincident with the star within several arc-seconds. These observations show that the source of non-thermal X-rays varies with the orbital phase of the binary, and that the photon index of the emission is similar to that derived through analysis of the γ-ray spectrum. This is conclusive evidence that the high-energy emission indeed originates from non-thermal particles accelerated at colliding wind shocks.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Koyama, K. et al. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature 378, 255–258 (1995).

  2. 2.

    Morlino, G. & Caprioli, D. Strong evidence for hadron acceleration in Tycho’s supernova remnant. Astron. Astrophys. 538, A81 (2012).

  3. 3.

    Pittard, J. M. & Dougherty, S. M. Radio, X-ray, and γ-ray emission models of the colliding-wind binary WR140. Mon. Not. R. Astron. Soc. 372, 801–826 (2006).

  4. 4.

    De Becker, M., Benaglia, P., Romero, G. E. & Peri, C. S. An investigation into the fraction of particle accelerators among colliding-wind binaries. Towards an extension of the catalogue. Astron. Astrophys. 600, A47 (2017).

  5. 5.

    Corcoran, M. F. X-ray monitoring of η Carinae: variations on a theme. Astron. J. 129, 2018–2025 (2005).

  6. 6.

    Groh, J. H., Hillier, D. J., Madura, T. I. & Weigelt, G. On the influence of the companion star in Eta Carinae: 2D radiative transfer modelling of the ultraviolet and optical spectra. Mon. Not. R. Astron. Soc. 423, 1623–1640 (2012).

  7. 7.

    Leyder, J.-C., Walter, R. & Rauw, G. Hard X-ray emission from η Carinae. Astron. Astrophys. 477, L29–L32 (2008).

  8. 8.

    Abdo, A. A. et al. Fermi large area telescope observation of a gamma-ray source at the position of Eta Carinae. Astrophys. J. 723, 649–657 (2010).

  9. 9.

    Sekiguchi, A. et al. Super-hard X-ray emission from η Carinae observed with Suzaku. Publ. Astron. Soc. Jpn 61, 629–637 (2009).

  10. 10.

    Castor, J. I., Abbott, D. C. & Klein, R. I. Radiation-driven winds in Of stars. Astrophys. J. 195, 157–174 (1975).

  11. 11.

    Dougherty, S. M. & Williams, P. M. Non-thermal emission in Wolf-Rayet stars: are massive companions required? Mon. Not. R. Astron. Soc. 319, 1005–1010 (2000).

  12. 12.

    De Becker, M. & Raucq, F. Catalogue of particle-accelerating colliding-wind binaries. Astron. Astrophys. 558, A28 (2013).

  13. 13.

    Williams, P. M. et al. Radio and infrared structure of the colliding-wind Wolf-Rayet system WR147. Mon. Not. R. Astron. Soc. 289, 10–20 (1997).

  14. 14.

    Dougherty, S. M., Beasley, A. J., Claussen, M. J., Zauderer, B. A. & Bolingbroke, N. J. High-resolution radio observations of the colliding-wind binary WR 140. Astrophys. J. 623, 447–459 (2005).

  15. 15.

    Corcoran, M. F. et al. The 2014 X-ray minimum of η Carinae as seen by Swift. Astrophys. J. 838, 45 (2017).

  16. 16.

    Hillier, D. J., Davidson, K., Ishibashi, K. & Gull, T. On the nature of the central source in η Carinae. Astrophys. J. 553, 837–860 (2001).

  17. 17.

    Pittard, J. M. & Corcoran, M. F. In hot pursuit of the hidden companion of Eta Carinae: an X-ray determination of the wind parameters. Astron. Astrophys. 383, 636–647 (2002).

  18. 18.

    Damineli, A. et al. The periodicity of the η Carinae events. Mon. Not. R. Astron. Soc. 384, 1649–1656 (2008).

  19. 19.

    Hamaguchi, K. et al. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle. Astrophys. J. 795, 119 (2014).

  20. 20.

    Leyder, J.-C. Walter, R. & Rauw, G. Hard X-ray identification of η Carinae and steadiness close to periastron. Astron. Astrophys. 524, A59 (2010).

  21. 21.

    Hamaguchi, K. et al. Eta Carinae’s thermal X-ray tail measured with XMM-Newton and NuSTAR. Astrophys. J. 817, 23 (2016).

  22. 22.

    Tavani, M. et al. Detection of gamma-ray emission from the Eta-Carinae region. Astrophys. J. Lett. 698, L142–L146 (2009).

  23. 23.

    Leser, E. First results of Eta Car observations with H.E.S.S.II. Preprint at https://arxiv.org/abs/1708.01033 (2017).

  24. 24.

    Reitberger, K., Reimer, A., Reimer, O. & Takahashi, H. The first full orbit of η Carinae seen by Fermi. Astron. Astrophys. 577, A100 (2015).

  25. 25.

    Harrison, F. A. et al. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

  26. 26.

    Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

  27. 27.

    Hamaguchi, K. et al. X-ray emission from Eta Carinae near Periastron in 2009. I. A two-state solution. Astrophys. J. 784, 125 (2014).

  28. 28.

    Pittard, J. M., Dougherty, S. M., Coker, R. F., O’Connor, E. & Bolingbroke, N. J. Radio emission models of colliding-wind binary systems. Inclusion of IC cooling. Astron. Astrophys. 446, 1001–1019 (2006).

  29. 29.

    Farnier, C., Walter, R. & Leyder, J.-C. η Carinae: a very large hadron collider. Astron. Astrophys. 526, A57 (2011).

  30. 30.

    Ohm, S., Zabalza, V., Hinton, J. A. & Parkin, E. R. On the origin of γ-ray emission in η Carina. Mon. Not. R. Astron. Soc. 449, L132–L136 (2015).

  31. 31.

    Madsen, K. K. et al. Calibration of the NuSTAR high-energy focusing X-ray telescope. Astrophys. J. Suppl. 220, 8 (2015).

  32. 32.

    Wik, D. R. et al. NuSTAR observations of the bullet cluster: constraints on inverse Compton emission. Astrophys. J. 792, 48 (2014).

  33. 33.

    Miyaji, T. et al. The cosmic X-ray background spectrum observed with ROSAT and ASCA. Astron. Astrophys. 334, L13–L16 (1998).

  34. 34.

    Valinia, A. & Marshall, F. E. RXTE measurement of the diffuse X-ray emission from the galactic ridge: implications for the energetics of the interstellar medium. Astrophys. J. 505, 134–147 (1998).

  35. 35.

    Ebisawa, K. et al. Chandra deep X-ray observation of a typical galactic plane region and near-infrared identification. Astrophys. J. 635, 214–242 (2005).

  36. 36.

    Hamaguchi, K., Drake, S. A., Corcoran, M. F., Richardson, N. & Teodoro, M. A gigantic X-ray flare from the star Trumpler 14 Y442 in the Carina star forming complex (The Astronomer’s Telegram 7983, 2015).

  37. 37.

    Hamaguchi, K. et al. X-ray spectral variation of η Carinae through the 2003 X-ray minimum. Astrophys. J. 663, 522–542 (2007).

  38. 38.

    Madura, T. I. et al. Constraints on decreases in η Carinae’s mass-loss from 3D hydrodynamic simulations of its binary colliding winds. Mon. Not. R. Astron. Soc. 436, 3820–3855 (2013).

  39. 39.

    Russell, C. M. P. et al. Modelling the central constant emission X-ray component of η Carinae. Mon. Not. R. Astron. Soc. 458, 2275–2287 (2016).

  40. 40.

    Corcoran, M. F. et al. Waiting in the wings: reflected X-ray emission from the Homunculus nebula. Astrophys. J. 613, 381–386 (2004).

  41. 41.

    Aschenbach, B. et al. in SPIE Vol. 4012: X-Ray Optics, Instruments, and Missions III (eds Trümper, J. E. & Aschenbach, B.) 731–739 (2000).

  42. 42.

    Strüder, L. et al. The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

  43. 43.

    Turner, M. J. L. et al. The European photon imaging camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).

  44. 44.

    Stevens, I. R., Blondin, J. M. & Pollock, A. M. T. Colliding winds from early-type stars in binary systems. Astrophys. J. 386, 265–287 (1992).

  45. 45.

    Eichler, D. & Usov, V. Particle acceleration and nonthermal radio emission in binaries of early-type stars. Astrophys. J. 402, 271–279 (1993).

Download references

Acknowledgements

This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. We appreciate M. Yukita, K. Madsen and M. Stuhlinger on helping resolve the NuSTAR and XMM-Newton data analysis. K.H. is supported by the Chandra grant GO4–15019A, GO7–18012A, the XMM-Newton grant NNX15AK62G, NNX16AN87G, NNX17AE67G, NNX17AE68G, and the ADAP grant NNX15AM96G. C.M.P.R. acknowledges initial support from Chandra Theory grant TM7-18003Z used in combination with an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA, and current support from FONDECYT grant 3170870. A.F.J.M. is supported by NSERC (Canada) and FQRNT (Quebec).

Author information

Affiliations

  1. CRESST II and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD, USA

    • Kenji Hamaguchi
    •  & Michael F. Corcoran
  2. Department of Physics, University of Maryland, Baltimore County, Baltimore, MD, USA

    • Kenji Hamaguchi
    •  & Neetika Sharma
  3. The Catholic University of America, Washington, DC, USA

    • Michael F. Corcoran
  4. School of Physics and Astronomy, The University of Leeds, Leeds, UK

    • Julian M. Pittard
  5. Department of Physical Science, Hiroshima University, Hiroshima, Japan

    • Hiromitsu Takahashi
  6. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA

    • Christopher M. P. Russell
    •  & Theodore R. Gull
  7. Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile

    • Christopher M. P. Russell
  8. Space Radiation Lab, California Institute of Technology, Pasadena, CA, USA

    • Brian W. Grefenstette
  9. Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA

    • Daniel R. Wik
  10. Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH, USA

    • Noel D. Richardson
  11. Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA, USA

    • Thomas I. Madura
  12. Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P., Montreal, Canada

    • Anthony F. J. Moffat

Authors

  1. Search for Kenji Hamaguchi in:

  2. Search for Michael F. Corcoran in:

  3. Search for Julian M. Pittard in:

  4. Search for Neetika Sharma in:

  5. Search for Hiromitsu Takahashi in:

  6. Search for Christopher M. P. Russell in:

  7. Search for Brian W. Grefenstette in:

  8. Search for Daniel R. Wik in:

  9. Search for Theodore R. Gull in:

  10. Search for Noel D. Richardson in:

  11. Search for Thomas I. Madura in:

  12. Search for Anthony F. J. Moffat in:

Contributions

K.H. and M.F.C. led the project, from proposing and planning observations, analysing the data to composing the manuscript. J.M.P. constructed a theoretical model that explains the variation of the non-thermal component. N.S. performed initial analysis of the NuSTAR data in 2015. H.T analysed and discussed Fermi data of η Car. C.M.P.R. performed theoretical simulations of η Car’s thermal X-ray emission. B.W.G. and D.R.W. discussed NuSTAR data analysis, especially the background characteristics. T.R.G. worked for the observation planning. T.R.G., N.D.R., T.I.M. and A.F.J.M. discussed the wind property of η Car. All authors reviewed the manuscript and discussed the work.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Kenji Hamaguchi.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–3, Supplementary Tables 1–2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0505-1