Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous microwave emission from spinning nanodiamonds around stars

Abstract

Several interstellar environments produce anomalous microwave emission (AME), with brightness peaks at tens-of-gigahertz frequencies1. The emission’s origins are uncertain; rapidly spinning nanoparticles could emit electric-dipole radiation2, but the polycyclic aromatic hydrocarbons that have been proposed as the carrier are now found not to correlate with Galactic AME signals3,4. The difficulty is in identifying co-spatial sources over long lines of sight. Here, we identify AME in three protoplanetary disks. These are the only known systems that host hydrogenated nanodiamonds5, in contrast with the very common detection of polycyclic aromatic hydrocarbons6. Using spectroscopy, the nanodiamonds are located close to the host stars, at physically well-constrained temperatures7. Developing disk models8, we reproduce the emission with diamonds 0.75–1.1 nm in radius, holding ≤1–2% of the carbon budget. Ratios of microwave emission to stellar luminosity are approximately constant, allowing nanodiamonds to be ubiquitous, but emitting below the detection threshold in many star systems. This result is compatible with the findings of similar-sized diamonds within Solar System meteorites9. As nanodiamond spectral absorption is seen in interstellar sightlines10, these particles are also a candidate for generating galaxy-scale3 AME.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flux profile of AME and modelled probabilities for nanodiamond size and abundance in the V892 Tau system.
Fig. 2: Flux profile of AME and modelled probabilities for nanodiamond size and abundance in the HD 97048 system.
Fig. 3: Flux profile of AME and modelled probabilities for nanodiamond size and abundance in the MWC 297 system.

References

  1. Kogut, A. et al. Microwave emission at high galactic latitudes in the four-year DMR sky maps. Astrophys. J. Lett. 464, L5–L9 (1996).

    Article  ADS  Google Scholar 

  2. Draine, B. T. & Lazarian, A. Electric dipole radiation from spinning dust grains. Astrophys. J. 508, 157–179 (1998).

    Article  ADS  Google Scholar 

  3. Planck Consortium et al. Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data. Astron. Astrophys. 580, A13 (2015).

    Article  Google Scholar 

  4. Hensley, B. S., Draine, B. T. & Meisner, A. M. A case against spinning PAHs as the source of the anomalous microwave emission. Astrophys. J. 827, 45 (2016).

    Article  ADS  Google Scholar 

  5. Acke, B. & van den Ancker, M. E. A survey for nanodiamond features in the 3 micron spectra of Herbig Ae/Be stars. Astron. Astrophys. 457, 171–181 (2006).

    Article  ADS  Google Scholar 

  6. Keller, L. D. et al. PAH emission from Herbig Ae/Be stars. Astrophys. J. 684, 411–429 (2008).

    Article  ADS  Google Scholar 

  7. Goto, M. et al. Spatially resolved 3 μm spectroscopy of Elias 1: origin of diamonds in protoplanetary disks. Astrophys. J. 693, 610–616 (2009).

    Article  ADS  Google Scholar 

  8. Rafikov, R. R. Microwave emission from spinning dust in circumstellar disks. Astrophys. J. 646, 288–296 (2006).

    Article  ADS  Google Scholar 

  9. Ott, H. Nanodiamonds in meteorites: properties and astrophysical context. J. Achiev. Mater. Manuf. Eng. 37, 779–784 (2009).

    Google Scholar 

  10. Allamandola, L. J., Sandford, S. A., Tielens, A. G. G. M. & Herbst, T. M. Infrared spectroscopy of dense clouds in the C–H stretch region—methanol and ‘diamonds’. Astrophys. J. 399, 134–146 (1992).

    Article  ADS  Google Scholar 

  11. Mohanty, S. et al. Protoplanetary disk masses from stars to brown dwarfs. Astrophys. J. 773, 168 (2013).

    Article  ADS  Google Scholar 

  12. Menu, J. et al. The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps. Astron. Astrophys. 581, A107 (2015).

    Article  Google Scholar 

  13. Blades, J. C. & Whittet, D. C. B. Observations of unidentified infrared features in the pre-main sequence star HD 97048. Mon. Not. R. Astron. Soc. 191, 701–709 (1980).

    Article  ADS  Google Scholar 

  14. Guillois, O., Ledoux, G. & Reynaud, C. Diamond infrared emission bands in circumstellar media. Astrophys. J. 521, L133–L136 (1999).

    Article  ADS  Google Scholar 

  15. Miyahara, M. et al. Unique large diamonds in a ureilite from Almahata Sitta 2008 TC3 asteroid. Geochim. Cosmochim. Acta 163, 14–26 (2015).

    Article  ADS  Google Scholar 

  16. Acke, B. & van den Ancker, M. E. ISO spectroscopy of disks around Herbig Ae/Be stars. Astron. Astrophys. 426, 151–170 (2004).

    Article  ADS  Google Scholar 

  17. Geers, V. C. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features. Astron. Astrophys. 459, 545–556 (2006).

    Article  ADS  Google Scholar 

  18. Bernstein, L. S., Clark, F. O., Cline, J. A. & Lynch, D. K. The diffuse interstellar bands and anomalous microwave emission may originate from the same carriers. Astrophys. J. 813, 122 (2015).

    Article  ADS  Google Scholar 

  19. Hensley, B. S. & Draine, B. T. Modeling the anomalous microwave emission with spinning nanoparticles: no PAHs required. Astrophys. J. 836, 179 (2017).

    Article  ADS  Google Scholar 

  20. Pascucci, I. et al. Low extreme-ultraviolet luminosities impinging on protoplanetary disks. Astrophys. J. 715, 1 (2014).

    Article  ADS  Google Scholar 

  21. Bauschlicher, C. W., Liu, Y., Ricca, A., Mattioda, A. L. & Allamandola, L. J. Electronic and vibrational spectroscopy of diamondoids and the interstellar infrared bands between 3.35 and 3.55 μm. Astrophys. J. 671, 458–469 (2007).

    Article  ADS  Google Scholar 

  22. Steglich, M., Huisken, F., Dahl, J. E., Carlson, R. M. & Henning, T. Electronic spectroscopy of FUV-irradiated diamondoids: a combined experimental and theoretical study. Astrophys. J. 729, 91 (2011).

    Article  ADS  Google Scholar 

  23. Pirali, O. et al. Infrared spectroscopy of diamondoid molecules: new insights into the presence of nanodiamonds in the interstellar medium. Astrophys. J. 661, 919–925 (2007).

    Article  ADS  Google Scholar 

  24. Terada, H., Imanishi, M., Goto, M. & Maihara, T. Detection of the unusual 3.5 μm feature in the Herbig Be star MWC 297. Astron. Astrophys. 377, 994–998 (2001).

    Article  ADS  Google Scholar 

  25. Habart, E., Testi, L., Natta, A. & Carbillet, M. Diamonds in HD 97048: a closer look. Astrophys. J. 614, L129–L132 (2004).

    Article  ADS  Google Scholar 

  26. Siebenmorgen, R., Kruegel, E. & Mathis, J. S. Radiative transfer for transiently heated particles. Astron. Astrophys. 266, 501–512 (1992).

    ADS  Google Scholar 

  27. Castelli, F. & Kurucz, R. Castelli and Kurucz Atlas (2004); http://www.stsci.edu/hst/observatory/crds/castelli_kurucz_atlas.html

  28. Scaife, A. M. M. et al. Microwave observations of spinning dust emission in NGC6946. Mon. Not. R. Astron. Soc. 406, L45–L49 (2010).

    ADS  Google Scholar 

  29. Campbell, E. K., Gerlich, D. & Maier, J. P. Laboratory confirmation of C60 + as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).

    Article  ADS  Google Scholar 

  30. Roberts, K. R. G., Smith, K. T. & Sarre, P. J. Detection of C60 in embedded young stellar objects, a Herbig Ae/Be star and an unusual post‐asymptotic giant branch star. Mon. Not. R. Astron. Soc. 421, 3277–3285 (2012).

    Article  ADS  Google Scholar 

  31. Perley, R. & Butler, B. J. An accurate flux density scale from 1 to 50 GHz. Astron. J. 204, 19 (2013).

    ADS  Google Scholar 

  32. Zwart, J. T. L. et al. The arcminute microkelvin imager. Mon. Not. R. Astron. Soc. 391, 1545–1558 (2008).

    Article  ADS  Google Scholar 

  33. Hamidouche, M. Aperture synthesis imaging of V892 Tau and PV Cep: disk evolution. Astrophys. J. 722, 204–211 (2010).

    Article  ADS  Google Scholar 

  34. Phillips, N. M. Far-infrared and Sub-millimetre Surveys of Circumstellar Discs. PhD thesis, Univ. Edinburgh (2011); https://www.era.lib.ed.ac.uk/handle/1842/5032

  35. Dzib, S. A. et al. The Gould’s Belt Very Large Array Survey. IV. The Taurus–Auriga complex. Astrophys. J. 801, 91 (2015).

    Article  ADS  Google Scholar 

  36. Di Francesco, J. et al. Millimeter and radio interferometry of Herbig Ae/Be stars. Astrophys. J. 482, 433–441 (1997).

    Article  ADS  Google Scholar 

  37. Skinner, S. L., Brown, A. & Stewart, R. T. A high-sensitivity survey of radio continuum emission from Herbig Ae/Be stars. Astrophys. J. Supp. 87, 217–265 (1993).

    Article  ADS  Google Scholar 

  38. Henning, T., Pfau, W., Zinnecker, H. & Prusti, T. A 1.3-mm survey of circumstellar dust around young chamaeleon objects. Astron. Astrophys. 276, 129–141 (1993).

    ADS  Google Scholar 

  39. Dunham, M. et al. An ALMA search for substructure, fragmentation, and hidden protostars in starless cores in Chamaeleon I. Astrophys. J. 823, 160 (2016).

    Article  ADS  Google Scholar 

  40. Van der Plas, G. et al. A cavity and further radial substructures in the disk around HD 97048. Astron. Astrophys. 597, A32 (2017).

    Article  Google Scholar 

  41. Frieswijk, W., Shipman, R. F., Lahuis, F. & Hormuth, F. SWS AOT-1 High Resolution Processing: Documentation Technical report number 52 (European Space Agency, 2007); http://ida.esac.esa.int:8080/hpdp/technical_reports/technote52.pdf

  42. Van Kerckhoven, C., Tielens, A. G. G. M. & Waelkens, C. Nanodiamonds around HD 97048 and Elias 1. Astron. Astrophys. 384, 568–584 (2002).

    Article  ADS  Google Scholar 

  43. Tanaka, M., Sato, S., Nagata, T. & Yamamoto, T. Three micron ice-band features in the Rho Ophiuchi sources. Astrophys. J. 352, 724–730 (1990).

    Article  ADS  Google Scholar 

  44. Brooke, T. Y., Sellgren, K. & Smith, R. G. A study of absorption features in the 3 micron spectra of molecular cloud sources with H2O ice bands. Astrophys. J. 459, 209–215 (1996).

    Article  ADS  Google Scholar 

  45. Sandell, G., Weintraub, D. A. & Hamidouche, M. A submillimeter mapping survey of Herbig AeBe stars. Astrophys. J. 727, 26 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities. Infrared spectra are presented from the processed data archives of ESA’s ISO and NASA’s Spitzer Space Telescope. A. Avison at JBCA reduced the Atacama Large Millimeter/submillimeter Array observations of HD 97048. A.M.M.S. gratefully acknowledges support from the European Research Council under grant ERC-2012-StG-307215 LODESTONE. We thank the staff of the Lord’s Bridge Observatory for their assistance in the operation of the AMI. The AMI is supported by the University of Cambridge and the STFC.

Author information

Authors and Affiliations

Authors

Contributions

J.S.G. led the project, analysed the GBT and ISO data, coded the initial models and drafted the paper. A.M.M.S. analysed the ATCA data, contributed AME and coding expertise, and wrote modelling sections of the paper. D.T.F., D.A.G., B.S.M. and A.M.S.S. contributed instrument, observation and software support, and commented on the paper.

Corresponding author

Correspondence to J. S. Greaves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greaves, J.S., Scaife, A.M.M., Frayer, D.T. et al. Anomalous microwave emission from spinning nanodiamonds around stars. Nat Astron 2, 662–667 (2018). https://doi.org/10.1038/s41550-018-0495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0495-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing