Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

Abstract

A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2,3,4,5,6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at ~1043 erg s−1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be 3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HST/ACS F775W imaging around the field of J2150–0551.
Fig. 2: Long-term luminosity and spectral evolution of J2150–0551.
Fig. 3: Disk luminosity versus temperature derived from the fits to the X-ray spectra of J2150–0551 with the standard thermal disk model.

Similar content being viewed by others

References

  1. Rees, M. J. Tidal disruption of stars by black holes of 10 to the 6th–10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  2. Komossa, S. & Bade, N. The giant X-ray outbursts in NGC 5905 and IC 3599: follow-up observations and outburst scenarios. Astron. Astrophys. 343, 775–787 (1999).

    ADS  Google Scholar 

  3. Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).

    Article  ADS  Google Scholar 

  4. Zauderer, B. A. et al. Radio monitoring of the tidal disruption event Swift J164449.3 + 573451. II. The relativistic jet shuts off and a transition to forward shock X-ray/radio emission. Astrophys. J. 767, 152 (2013).

    Article  ADS  Google Scholar 

  5. Miller, J. M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).

    Article  ADS  Google Scholar 

  6. Lin, D. et al. A likely decade-long sustained tidal disruption event. Nat. Astron. 1, 0033 (2017).

    Article  ADS  Google Scholar 

  7. Connelly, J. L. et al. Exploring the diversity of groups at 0.1 < z < 0.8 with X-ray and optically selected samples. Astrophys. J. 756, 139 (2012).

    Article  ADS  Google Scholar 

  8. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006).

    Article  ADS  Google Scholar 

  9. Done, C., Gierliński, M. & Kubota, A. Modelling the behaviour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask. Astron. Astrophys. Rev. 15, 1–66 (2007).

    Article  ADS  Google Scholar 

  10. Done, C., Davis, S. W., Jin, C., Blaes, O. & Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 1848–1860 (2012).

    Article  ADS  Google Scholar 

  11. Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).

    Article  ADS  Google Scholar 

  12. Mieske, S., Hilker, M. & Misgeld, I. The specific frequencies of ultra-compact dwarf galaxies. Astron. Astrophys. 537, A3 (2012).

    Article  Google Scholar 

  13. Drinkwater, M. J. et al. A class of compact dwarf galaxies from disruptive processes in galaxy clusters. Nature 423, 519–521 (2003).

    Article  ADS  Google Scholar 

  14. Pfeffer, J. & Baumgardt, H. Ultra-compact dwarf galaxy formation by tidal stripping of nucleated dwarf galaxies. Mon. Not. R. Astron. Soc. 433, 1997–2005 (2013).

    Article  ADS  Google Scholar 

  15. Phinney, E. S. in The Center of the Galaxy Vol. 136 (ed. Morris, M.) 543–553 (Springer, Dordrecht, 1989).

  16. Krolik, J. H. & Piran, T. Jets from tidal disruptions of stars by black holes. Astrophys. J. 749, 92 (2012).

    Article  ADS  Google Scholar 

  17. Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015).

    Article  ADS  Google Scholar 

  18. Li, L.-X., Narayan, R. & Menou, K. The giant X-ray flare of NGC 5905: tidal disruption of a star, a brown dwarf, or a planet? Astrophys. J. 576, 753–761 (2002).

    Article  ADS  Google Scholar 

  19. Komossa, S. et al. A huge drop in the X-ray luminosity of the nonactive galaxy RX J1242.6-1119A, and the first postflare spectrum: testing the tidal disruption scenario. Astrophys. J. 603, L17–L20 (2004).

    Article  ADS  Google Scholar 

  20. Van Velzen, S. et al. A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. Science 351, 62–65 (2016).

    Article  ADS  Google Scholar 

  21. Baumgardt, H., Makino, J. & Ebisuzaki, T. Massive black holes in star clusters. II. Realistic cluster models. Astrophys. J. 613, 1143–1156 (2004).

    Article  ADS  Google Scholar 

  22. Brockamp, M., Baumgardt, H. & Kroupa, P. Tidal disruption rate of stars by supermassive black holes obtained by direct N-body simulations. Mon. Not. R. Astron. Soc. 418, 1308–1324 (2011).

    Article  ADS  Google Scholar 

  23. Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).

    Article  ADS  Google Scholar 

  24. Lin, D. et al. Large decay of X-ray flux in 2XMM J123103.2 + 110648: evidence for a tidal disruption event. Mon. Not. R. Astron. Soc. 468, 783–789 (2017).

    Article  ADS  Google Scholar 

  25. Norris, M. A. et al. The AIMSS Project—I. Bridging the star cluster–galaxy divide. Mon. Not. R. Astron. Soc. 443, 1151–1172 (2014).

    Article  ADS  Google Scholar 

  26. Seth, A. C. et al. A supermassive black hole in an ultra-compact dwarf galaxy. Nature 513, 398–400 (2014).

    Article  ADS  Google Scholar 

  27. Kzltan, B., Baumgardt, H. & Loeb, A. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature 542, 203–205 (2017).

    Article  ADS  Google Scholar 

  28. Farrell, S. A., Webb, N. A., Barret, D., Godet, O. & Rodrigues, J. M. An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49. Nature 460, 73–75 (2009).

    Article  ADS  Google Scholar 

  29. Servillat, M. et al. X-ray variability and hardness of ESO 243-49 HLX-1: clear evidence for spectral state transitions. Astrophys. J. 743, 6 (2011).

    Article  ADS  Google Scholar 

  30. Godet, O. et al. Investigating slim disk solutions for HLX-1 in ESO 243-49. Astrophys. J. 752, 34 (2012).

    Article  ADS  Google Scholar 

  31. Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

    Article  ADS  Google Scholar 

  32. Strüder, L. et al. The European Photon Imaging Camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

    Article  ADS  Google Scholar 

  33. Turner, M. J. L. et al. The European Photon Imaging Camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).

    Article  ADS  Google Scholar 

  34. Watson, M. G. et al. The XMM-Newton serendipitous survey. V. The second XMM-Newton serendipitous source catalogue. Astron. Astrophys. 493, 339–373 (2009).

    Article  ADS  Google Scholar 

  35. Bautz, M. W. et al. X-ray CCD calibration for the AXAF CCD Imaging Spectrometer. Proc. SPIE 3444, 210–224 (1998).

    Article  ADS  Google Scholar 

  36. Lin, D. et al. Discovery of the candidate off-nuclear ultrasoft hyper-luminous X-ray source 3XMM J141711.1 + 522541. Astrophys. J. 821, 25 (2016).

    Article  ADS  Google Scholar 

  37. Freeman, P. E., Kashyap, V., Rosner, R. & Lamb, D. Q. A wavelet-based algorithm for the spatial analysis of Poisson data. Astrophys. J. Suppl. Ser. 138, 185–218 (2002).

    Article  ADS  Google Scholar 

  38. Cuillandre, J.-C., Luppino, G. A., Starr, B. M. & Isani, S. Performance of the CFH12K: a 12K by 8K CCD mosaic camera for the CFHT prime focus. Proc. SPIE 4008, 1010–1021 (2000).

    Article  ADS  Google Scholar 

  39. Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article  ADS  Google Scholar 

  40. Mason, K. O. et al. The XMM-Newton optical/UV monitor telescope. Astron. Astrophys. 365, L36–L44 (2001).

    Article  ADS  Google Scholar 

  41. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  42. Sirianni, M. et al. The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys. Publ. Astron. Soc. Pacif. 117, 1049–1112 (2005).

    Article  ADS  Google Scholar 

  43. Boulade, O. et al. MegaCam: the new Canada–France–Hawaii Telescope wide-field imaging camera. Proc. SPIE 4841, 72–81 (2003).

    Article  ADS  Google Scholar 

  44. Puget, P. et al. WIRCam: the infrared wide-field camera for the Canada–France–Hawaii Telescope. Proc. SPIE 5492, 978–987 (2004).

    Article  ADS  Google Scholar 

  45. Balogh, M. L. et al. The colour of galaxies in distant groups. Mon. Not. R. Astron. Soc. 398, 754–768 (2009).

    Article  ADS  Google Scholar 

  46. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of Galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article  ADS  Google Scholar 

  47. Hook, I. M. et al. The Gemini–North multi-object spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pacif. 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  48. Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pacif. 116, 138–147 (2004).

    Article  ADS  Google Scholar 

  49. Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES—I. The base models and a new line index system. Mon. Not. R. Astron. Soc. 404, 1639–1671 (2010).

    ADS  Google Scholar 

  50. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  51. Homan, J. et al. A strongly heated neutron star in the transient Z source MAXI J0556-332. Astrophys. J. 795, 131 (2014).

    Article  ADS  Google Scholar 

  52. Degenaar, N., Ootes, L. S., Reynolds, M. T., Wijnands, R. & Page, D. A cold neutron star in the transient low-mass X-ray binary HETE J1900.1-2455 after 10 yr of active accretion. Mon. Not. R. Astron. Soc. 465, L10–L14 (2017).

    Article  ADS  Google Scholar 

  53. Wijnands, R., Degenaar, N. & Page, D. Cooling of accretion-heated neutron stars. J. Astrophys. Astron. 38, 49 (2017).

    Article  ADS  Google Scholar 

  54. Haensel, P. & Zdunik, J. L. Non-equilibrium processes in the crust of an accreting neutron star. Astron. Astrophys. 227, 431–436 (1990).

    ADS  Google Scholar 

  55. Brown, E. F., Bildsten, L. & Rutledge, R. E. Crustal heating and quiescent emission from transiently accreting neutron stars. Astrophys. J. 504, L95 (1998).

    Article  ADS  Google Scholar 

  56. Levine, A. M. et al. First results from the All-Sky Monitor on the Rossi X-Ray Timing Explorer. Astrophys. J. 469, L33 (1996).

    Article  ADS  Google Scholar 

  57. Page, D., Lattimer, J. M., Prakash, M. & Steiner, A. W. Minimal cooling of neutron stars: a new paradigm. Astrophys. J. Suppl. Ser. 155, 623–650 (2004).

    Article  ADS  Google Scholar 

  58. Page, D. & Reddy, S. Forecasting neutron star temperatures: predictability and variability. Phys. Rev. Lett. 111, 241102 (2013).

    Article  ADS  Google Scholar 

  59. Page, D. NSCool: Neutron Star Cooling Code (Astrophysics Source Code Library, 2016).

  60. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306 (2013).

    Article  ADS  Google Scholar 

  61. Armas Padilla, M., Degenaar, N. & Wijnands, R. The X-ray spectral properties of very-faint persistent neutron star X-ray binaries. Mon. Not. R. Astron. Soc. 434, 1586–1592 (2013).

    Article  ADS  Google Scholar 

  62. Brown, E. F. & Cumming, A. Mapping crustal heating with the cooling light curves of quasi-persistent transients. Astrophys. J. 698, 1020–1032 (2009).

    Article  ADS  Google Scholar 

  63. Deibel, A., Cumming, A., Brown, E. F. & Page, D. A strong shallow heat source in the accreting neutron star MAXI J0556-332. Astrophys. J. 809, L31 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.L. is supported by the National Aeronautics and Space Administration (NASA) through Chandra Award number GO6-17046X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA under contract NAS8-03060, and by the NASA ADAP grant NNX17AJ57G. A.J.R. was supported by National Science Foundation (NSF) grant AST-1515084, and as a Research Corporation for Science Advancement Cottrell Scholar. J.S. acknowledges support from NSF grant AST-1514763 and a Packard Fellowship. D.P. was partially supported by the Consejo Nacional de Ciencia y Tecnología with CB-2014-1 grant number 240512. N.A.W., O.G. and D.B. acknowledge CNES for financial support to the XMM-Newton Survey Science Center activities. R.W. acknowledges support from the Netherlands Organisation for Scientific Research through a TOP Grant, module 1. J.P.B. acknowledges support from NSF grant AST 1518294. We thank the former Swift principal investigator N. Gehrels for approving our target of opportunity request to observe J2150–0551. We thank Z. Jennings for assistance with the Suprime-Cam data. The findings in this paper are based on observations obtained from XMM-Newton, Chandra, Swift, HST, CFHT, Gemini, SOAR and Subaru.

Author information

Authors and Affiliations

Authors

Contributions

D.L. wrote the main manuscript and led the data analysis. E.R.C. helped reduce the GMOS spectra and pre-imaging. D.P. performed the MCMC simulations for NSCool. J.S. obtained the SOAR U-band image and fitted the HST image with ISHAPE. A.J.R. obtained the Subaru g′-band image. S.D.J.G. stacked the CFHT images. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dacheng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary Figures 1–12, Supplementary Tables 1–3, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Strader, J., Carrasco, E.R. et al. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat Astron 2, 656–661 (2018). https://doi.org/10.1038/s41550-018-0493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0493-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing