The case for electron re-acceleration at galaxy cluster shocks

  • An Erratum to this article was published on 13 January 2017

Abstract

On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events3. A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Subaru gri colour image of the merging cluster Abell 3411–3412.
Figure 2: GMRT radio images.
Figure 3: Subaru optical, radio spectral index, and polarization maps of the northeast component of the radio relic in Abell 3411–3412.
Figure 4: Chandra 0.5–2.0 keV surface brightness (SB) profile across the radio relic in an elliptical sector (see the Supplementary Information).

References

  1. 1

    Feretti, L., Giovannini, G., Govoni, F. & Murgia, M. Clusters of galaxies: observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 20, 54 (2012).

    Article  ADS  Google Scholar 

  2. 2

    Brunetti, G. & Jones, T. W. Cosmic rays in galaxy clusters and their nonthermal emission. Int. J. Mod. Phys. D 23, 1430007–98 (2014).

    Article  ADS  Google Scholar 

  3. 3

    Ensslin, T. A., Biermann, P. L., Klein, U. & Kohle, S. Cluster radio relics as a tracer of shock waves of the large-scale structure formation. Astron. Astrophys. 332, 395–409 (1998).

    ADS  Google Scholar 

  4. 4

    Ryu, D., Kang, H., Hallman, E. & Jones, T. W. Cosmological shock waves and their role in the large-scale structure of the Universe. Astrophys. J. 593, 599–610 (2003).

    Article  ADS  Google Scholar 

  5. 5

    Kang, H. & Ryu, D. Cosmic ray spectrum from diffusive shock acceleration. Astrophys. Space Sci. 336, 263–268 (2011).

    Article  ADS  Google Scholar 

  6. 6

    Macario, G. et al. A shock front in the merging galaxy cluster A754: X-ray and radio observations. Astrophys. J. 728, 82 (2011).

    Article  ADS  Google Scholar 

  7. 7

    Shimwell, T. W. et al. Another shock for the Bullet cluster, and the source of seed electrons for radio relics. Mon. Not. R. Astron. Soc. 449, 1486–1494 (2015).

    Article  ADS  Google Scholar 

  8. 8

    Kang, H., Ryu, D. & Jones, T. W. Diffusive shock acceleration simulations of radio relics. Astrophys. J. 756, 97 (2012).

    Article  ADS  Google Scholar 

  9. 9

    Pinzke, A., Oh, S. P. & Pfrommer, C. Giant radio relics in galaxy clusters: reacceleration of fossil relativistic electrons? Mon. Not. R. Astron. Soc. 435, 1061–1082 (2013).

    Article  ADS  Google Scholar 

  10. 10

    Vazza, F. & Brìggen, M. Do radio relics challenge diffusive shock acceleration? Mon. Not. R. Astron. Soc. 437, 2291–2296 (2014).

    Article  ADS  Google Scholar 

  11. 11

    Itahana, M. et al. Suzaku observations of the galaxy cluster 1RXS J0603.3+4214: implications of particle acceleration processes in the “Toothbrush” radio relic. Publ. Astron. Soc. Jpn. 67, 113 (2015).

    Article  ADS  Google Scholar 

  12. 12

    van Weeren, R. J. LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster. Astrophys. J. 818, 204 (2016).

    Article  ADS  Google Scholar 

  13. 13

    Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987).

    Article  ADS  Google Scholar 

  14. 14

    Russell, H. R. et al. A merger mystery: no extended radio emission in the merging cluster Abell 2146. Mon. Not. R. Astron. Soc. 417, 1–5 (2011).

    Article  ADS  Google Scholar 

  15. 15

    Guo, X., Sironi, L. & Narayan, R. Non-thermal Electron acceleration in low mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions. Astrophys. J. 797, 47 (2014).

    Article  ADS  Google Scholar 

  16. 16

    Botteon, A., Gastaldello, F., Brunetti, G. & Dallacasa, D. A shock at the radio relic position in Abell 115. Mon. Not. R. Astron. Soc. 460, 84–88 (2016).

    Article  ADS  Google Scholar 

  17. 17

    Eckert, D. et al. A shock front at the radio relic of Abell 2744. Mon. Not. R. Astron. Soc. 461, 1302–1307 (2016).

    Article  ADS  Google Scholar 

  18. 18

    Markevitch, M., Govoni, F., Brunetti, G. & Jerius, D. Bow shock and radio halo in the merging cluster A520. Astrophys. J. 627, 733–738 (2005).

    Article  ADS  Google Scholar 

  19. 19

    Kang, H. & Ryu, D. Curved radio spectra of weak cluster shocks. Astrophys. J. 809, 186 (2015).

    Article  ADS  Google Scholar 

  20. 20

    Bonafede, A. et al. Evidence for particle re-acceleration in the radio relic in the galaxy cluster PLCKG287.0+32.9. Astrophys. J. 785, 1 (2014).

    Article  ADS  Google Scholar 

  21. 21

    Giovannini, G., Feretti, L. & Stanghellini, C. The Coma cluster radio source 1253+275, revisited. Astron. Astrophys. 252, 528–537 (1991).

    ADS  Google Scholar 

  22. 22

    Bagchi, J. et al. Discovery of the first giant double radio relic in a galaxy cluster found in the Planck Sunyaev-Zel’dovich Cluster Survey: PLCK G287.0+32.9. Astrophys. J. 736, 8 (2011).

    Article  ADS  Google Scholar 

  23. 23

    Enßlin, T. A. & Gopal-Krishna, Reviving fossil radio plasma in clusters of galaxies by adiabatic compression in environmental shock waves. Astron. Astrophys. 366, 26–34 (2001).

    Article  ADS  Google Scholar 

  24. 24

    Enßlin, T. A. & Brìggen, M. On the formation of cluster radio relics. Mon. Not. R. Astron. Soc.. 331, 1011–1019 (2002).

    Article  ADS  Google Scholar 

  25. 25

    van Weeren, R. J. et al. Complex diffuse radio emission in the merging Planck ESZ Cluster A3411. Astrophys. J. 769, 101 (2013).

    Article  ADS  Google Scholar 

  26. 26

    Giovannini, G. et al. The nature of the giant diffuse non-thermal source in the A3411-A3412 complex. Mon. Not. R. Astron. Soc. 435, 518–523 (2013).

    Article  ADS  Google Scholar 

  27. 27

    van Weeren, R. J., Röttgering, H. J. A., Brìggen, M. & Hoeft, M. Particle acceleration on megaparsec scales in a merging galaxy cluster. Science 330, 347 (2010).

    Article  ADS  Google Scholar 

  28. 28

    Fujita, Y., Takizawa, M., Yamazaki, R., Akamatsu, H. & Ohno, H. Turbulent cosmic-ray reacceleration at radio relics and halos in clusters of galaxies. Astrophys. J. 815, 116 (2015).

    Article  ADS  Google Scholar 

  29. 29

    Vazza, F., Eckert, D., Brìggen, M. & Huber, B. Electron and proton acceleration efficiency by merger shocks in galaxy clusters. Astrophys. J. 451, 2198–2211 (2015).

    ADS  Google Scholar 

  30. 30

    Stockem, A., Fiuza, F., Bret, A., Fonseca, R. A. & Silva, L. O. Exploring the nature of collisionless shocks under laboratory conditions. Sci. Rep. 4, 3934 (2014).

  31. 31

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F . & Bel, D. J. ) 127 (Astron. Soc. Pacif. Conf. Ser. Vol. 376, 2007).

    Google Scholar 

  32. 32

    Cornwell, T. J., Golap, K. & Bhatnagar, S. The noncoplanar baselines effect in radio interferometry: the W-projection algorithm. IEEE J. Sel. Top. Signal Process. 2, 647–657 (2008).

    Article  ADS  Google Scholar 

  33. 33

    Cornwell, T. J., Golap, K. & & Bhatnagar, S. W in Astronomical Data Analysis Software and Systems XIV (eds Shopbel, P. L, Britton, M. & Ebert, R. ) 86 (Astron. Soc. Pacif. Conf. Ser. Vol. 376, 2005).

    Google Scholar 

  34. 34

    van Weeren, R. J. et al. The discovery of lensed radio and X-Ray sources behind the frontier fields cluster MACS J0717.5+3745 with the JVLA and Chandra. Astrophys. J. 817, 98 (2016).

    Article  ADS  Google Scholar 

  35. 35

    Offringa, A. R. et al. Post-correlation radio frequency interference classification methods Mon. Not. R. Astron. Soc. 405, 155–167 (2010).

    ADS  Google Scholar 

  36. 36

    Taylor, A. R., Stil, J. M. & Sunstrum, C. A Rotation measure image of the sky. Astrophys. J. 702, 1230–1236 (2009).

    Article  ADS  Google Scholar 

  37. 37

    Fanaroff, B. L. & Riley, J. M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 31–36 (1974).

    Article  ADS  Google Scholar 

  38. 38

    Vikhlinin, A. et al. Chandra temperature profiles for a sample of nearby relaxed galaxy clusters. Astrophys. J. 628, 655–672 (2005).

    Article  ADS  Google Scholar 

  39. 39

    Eckert, D., Molendi, S. & Paltani, S. The cool-core bias in X-ray galaxy cluster samples. I: Method and application to HIFLUGCS. Astron. Astrophys. 526, 79 (2011).

    Article  ADS  Google Scholar 

  40. 40

    Ogrean, G. A. et al. Challenges to our understanding of radio relics: X-ray observations of the Toothbrush cluster. Mon. Not. R. Astron. Soc. 433, 812–824 (2013).

    Article  ADS  Google Scholar 

  41. 41

    Miyazaki, S. et al. Subaru Prime Focus Camera — Suprime-Cam. Publ. Astron. Soc. Jpn. 54, 833–853 (2002).

    Article  ADS  Google Scholar 

  42. 42

    Jee, M. J. et al. MC2: Constraining the dark matter distribution of the violent merging galaxy cluster CIZA J2242.8+5301 by piercing through the milky Way. Astrophys. J. 802, 46 (2015).

    Article  ADS  Google Scholar 

  43. 43

    Stroe, A. et al. The role of cluster mergers and travelling shocks in shaping the Hα luminosity function at z0.2: ‘sausage’ and ‘toothbrush’ clusters. Mon. Not. R. Astron. Soc. 438, 1377–1390 (2014).

    Article  ADS  Google Scholar 

  44. 44

    Sobral, D. et al. MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z=0.19. Mon. Not. R. Astron. Soc. 450, 630–645 (2015).

    Article  ADS  Google Scholar 

  45. 45

    Bertin, E. in Astronomical Data Analysis Software and Systems (eds Gabriel, C., Arviset, C., Ponz, D. & Enrique, S.) 112 (Astron. Soc. Pacif. Conf. Ser. Vol. 351, 2006).

  46. 46

    Zacharias, N. et al. The Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) Astron. J. 145, 44 (2013).

    Article  ADS  Google Scholar 

  47. 47

    Bertin, E. et al. in Astronomical Data Analysis Software and Systems XI (eds Bohlender, D. A., Durand, D. & Handley, T. H.) 228 (Astron. Soc. Pacif. Conf. Ser. Vol. 281, 2002).

  48. 48

    Faber, S. M. et al. in Proc. SPIE - International Society for Optical Engineering (eds Iye, M. & Moorwood, A. F. M) Vol. 4841, 1657–1669 (International Society for Optics and Photonics, 2003).

  49. 49

    Dawson, W. A. et al. MC2: galaxy imaging and redshift analysis of the merging cluster CIZA J2242.8+5301. Astrophys. J. 805, 143 (2015).

    Article  ADS  Google Scholar 

  50. 50

    Newman, J. A. et al. The DEEP2 Galaxy Redshift Survey: design, observations, data reduction, and redshifts. Astrophys. J. Suppl. Ser. 208, 5 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Numbers GO3-14131X and GO5-16133X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under Contract NAS8-03060. We thank the staff of the Giant Metrewave Radio Telescope (GMRT) who have made these observations possible. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Part of this work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The Isaac Newton Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. R.J.W. was supported by a Clay Fellowship awarded by the Harvard-Smithsonian Center for Astrophysics. V.M.P. acknowledges support for this work from grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation. D.R. was supported by the National Research Foundation of Korea through Grant 2016R1A5A1013277. H.K. was supported by the National Research Foundation of Korea through Grant 2014R1A1A2057940. R.M.S. acknowledges CAPES (PROEX), CNPq, PRPG/USP, FAPESP and INCT-A funding. M.J.J. acknowledges support from KASI and NRF of Korea to CGER. D.S. acknowledges financial support from the Netherlands Organisation for Scientific research (NWO) through a Veni fellowship. G.A.O. is supported by NASA through Hubble Fellowship Grant HST-HF2-51345.001-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under Contract NAS5-26555.

Author information

Affiliations

Authors

Contributions

R.J.W. coordinated the research, wrote the manuscript, reduced the VLA data, and led the Chandra observing proposal. F.A.S., K.F. and G.A.O. performed the Chandra data reduction and worked on the X-ray surface brightness profile fitting. H.K. and D.R. carried out the re-acceleration modeling. M.B., W.R.F. and C.J. helped with the interpretation of the radio and X-ray results and provided extensive feedback on the manuscript. C.J. led the GMRT observing proposal. D.V.L. obtained the GMRT observations and carried out the GMRT data reduction. V.M.P. and R.M.A. obtained the SOAR observations and performed the corresponding data reduction. D.S. and A.S. obtained the INT observations and reduced the data. W.A.D. carried out the dynamical modeling of the merger event. W.A.D, N.G. and M.J.J. obtained the Keck and Subaru observations and reduced the data. D.W. helped with the interpretation of the dynamical modeling and led the Keck and Subaru observing proposals. R.P.K. assisted with the writing of the Chandra observing proposal.

Corresponding author

Correspondence to Reinout J. van Weeren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–16. (PDF 4976 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Weeren, R., Andrade-Santos, F., Dawson, W. et al. The case for electron re-acceleration at galaxy cluster shocks. Nat Astron 1, 0005 (2017). https://doi.org/10.1038/s41550-016-0005

Download citation

Further reading