Abstract
We study the effect of strain on the physical properties of the nitrogen antisitevacancy pair in hexagonal boron nitride (hBN), a color center that may be employed as a quantum bit in a twodimensional material. With group theory and ab initio analysis we show that strong electron–phonon coupling plays a key role in the optical activation of this color center. We find a giant shift on the zerophononline (ZPL) emission of the nitrogen antisitevacancy pair defect upon applying strain that is typical of hBN samples. Our results provide a plausible explanation for the experimental observation of quantum emitters with similar optical properties but widely scattered ZPL wavelengths and the experimentally observed dependence of the ZPL on the strain.
Introduction
Quantum emissions from twodimensional (2D) materials have recently received considerable and rapidly rising interest of researchers in both condensed matter and quantum optics^{1,2,3} as these systems provide a potential basis for emerging technologies such as quantum nanophotonics^{4,5,6}, quantum sensing^{7,8,9}, and quantum information processing^{10,11}. The observation of singlephoton emitters (SPEs) in hexagonal boron nitrite (hBN) has added a fascinating new facet to the research field of layered materials^{12}. The wide band gap of hBN makes it an insulator that can host highquality emitters and allows for combination with other materials as substrates^{13}. The experiments for exploring the nature of the emission of these color centers started with their first observations^{10,14,15,16,17,18,19,20,21,22,23,24,25} and recent theoretical works have provided evidence that the SPEs are indeed color centers, i.e., local point defects^{26,27,28,29,30}.
Despite the considerable efforts that have been directed at the experimental exploration of these SPEs so far, a thorough theoretical understanding of the properties of the emitters that have been experimentally observed remains to be developed. Especially, the fact that many emitters appear at the edges of hBN flakes and wrinkles on them^{31,32} motivates the investigation on the effect of strain on these emitters. Furthermore, the quantum emitters have shown magnetic properties in some experiments^{33,34,35,36}, while in other experiments nonmagnetic behavior was found^{21}.
The most commonly observed quantum emitters exhibit emission in the visible, where competing for theoretical models^{27,37} exists in the literature. It has been suggested recently, based on the similarities of the optical lifetimes of the observed quantum emitters^{38}, that two types of quantum emitters in the visible region may occur in hBN, and the widely scattered zerophononline (ZPL) energies might be attributed to external perturbations. One of the key candidates for this external perturbation is the local strain that may vary significantly in the hBN samples, in particular, in polycrystalline hBN samples. In another recent work, on the other hand, four different types of emitters have been found by means of combined chatodoluminescence and photoluminescence study where the applied stress did not change the brightness of emitters and the shift in ZPL was in the 10 meV region^{39}. Yet another experiment also found a relatively small shift upon applied stress on a given emitter^{40}.
These seemingly contradictory observations and the lack of a conclusive theoretical prediction motivates the study of the effect of strain on point defects in hBN based on the assumption that point defects are the origin of the observed quantum emitters. Furthermore, a thorough understanding of the electron–strain coupling properties also forms a rigorous theoretical basis for proposed spin and electromechanical systems for control and manipulation of a mechanical resonator by means of spinmotion coupling^{11,41,42}. Grouptheory analysis in combination with ab initio Kohn–Sham density functional theory (DFT) simulations can be a very powerful tools for understanding the coupling between optical emission and strain. So far the electronstrain coupling in hBN emitters has been studied with limited accuracy^{40} by monitoring only the change in Kohn–Sham levels and the states that do not directly provide the ZPL energy in the PL spectrum monitored in the experiments.
Here we study the effect of strain on the ZPL emission of a key color center in hBN, the nitrogen antisitevacancy pair defect, by means of group theory and advanced DFT calculations, which can act as a quantum emitter with exhibiting a ZPL emission at around 1.9 eV (645 nm)^{27}. We report a giant, 12 eV/strain ZPLstrain coupling parameter for this quantum emitter which results in about 100 nm scattering of the ZPL emission with ±1% strain in hBN sample. The physical origin of this giant effect is the strong electron–phonon coupling in hBN. This result implies that local perturbations for vacancy type defects can seriously affect their optical spectrum and provide an explanation for the zoo of reported quantum emitters in the visible region.
Results and discussion
Group theory and DFT calculation analysis
The sensitivity of the optical ZPL emission to the applied local strain greatly depends on the microscopic configuration of the point defect in hBN. Here, we put our focus on the neutral nitrogen antisitevacancy pair defect, V_{N}N_{B}, which was first suggested as a candidate of the observed singlephoton emissions^{10} and then thoroughly studied as one of the feasible quantum emitter in the visible with S = 1/2 spin state^{27}. The optical properties of this defect have been examined from various theoretical methods and point of view^{27,43,44,45}. The defect has a C_{2v} symmetry before the relaxation of the atoms in monolayer hBN, and introduces three levels in the energy band gap that are labeled as a_{1}, b_{2} and \({b}_{2}^{\prime}\) owing to their irreducible symmetry representation. These energy levels are occupied by three electrons resulting a ^{2}B_{2} manyelectron ground state (see Figs. 1 and 2). In this paper, we use majuscule and minuscule to labels the symmetry of the manyelctron states and oneelectron levels, respectively. The two lowestenergy spinpreserving optical transitions are the following: in the spin majority channel the electron from b_{2} may be promoted to \({b}_{2}^{\prime}\) or in the spin minority channel the electron from a_{1} may be promoted to b_{2}. It is found that the a_{1} ↔ b_{2} has lower energy than \({b}_{2}\leftrightarrow {b}_{2}^{\prime}\)^{27,43,44}. However, for the defect with the C_{2v} symmetry, the a_{1} ↔ b_{2} optical transition has a very small optical transition inplane dipole moment^{44}. Indeed, we also find this behavior in our own DFT calculation (see Supplementary Fig. S1). We indeed notice that b_{2} and \({b}_{2}^{\prime}\) states have wavefunctions that extend outofplane (see Fig. 1b), and therefore, can couple to phonon modes that drive the atoms outofplane, the membrane modes. There is an unpaired electron in both B_{2} ground state and \({B}_{2}^{\prime}\) excited state placed on the b_{2} and \({b}_{2}^{\prime}\) orbital, respectively, that induce an outofplane geometry distortion. These phonon modes strongly couple the ^{2}B_{2} ground state and the ^{2}A_{1} excited state leading to the vibronic instablility of the ground state. Therefore, the defect does not preserve the planar structure and the nitrogen antisite moves out from the plane in the ground state reducing the symmetry of the defect to C_{s} (see Fig. 1a). This geometry is about 100 meV lower in energy than the C_{2v} configuration which reveals the strong coupling of the defect electrons to the membrane mode phonons. This result basically agrees with previous DFT calculations^{46}. In C_{s} symmetry, all the oneelectron defect levels belong to \({a}^{\prime}\) irreducible representation. Despite the vibronic mixing, the correspondence to the high symmetry orbitals can be observed in Fig. 1b and c. When the hole is left at a_{1} orbital in the A_{1} excited state, then the coupling to the membrane phonons is negligible and the defects C_{2v} symmetry is retrieved. For the sake of simplicity, here we use the C_{2v} symmetry labels for both configurations. The transformation of the point symmetry of the defect is discussed in Supplementary Note 1.
Owing to the rearrangement of the ions, the B_{2}(C_{s}) ↔ A_{1}(C_{2v}) optical transition assumes a dipole moment symmetry similar to that of \({B}_{2}({{\rm{C}}}_{{\rm{s}}})\leftrightarrow {B}_{2}^{\prime}({{\rm{C}}}_{{\rm{s}}})\) transition (see Supplementary Note 2). This becomes clear from Fig. 1c where the wavefunctions b_{2} and a_{1} are shown for the C_{s} configuration. In fact, both of them transform as \({A}^{\prime}\) in the C_{s} configuration, and therefore, are coupled via the inplane (the stronger component) polarization. As a consequence, the lowestenergy fluorescence is expected to occur as a radiative decay from the A_{1}(C_{2v}) excited state to the B_{2}(C_{s}) ground state because A_{1} excited state has lower energy than that of \({B}_{2}^{\prime}\) excited state^{27}. This result constitutes the optical activation of a color center in hBN by means of a strong electron–phonon coupling. Consequently, it becomes important to study the strain dependence of the ZPL emission for the B_{2}(C_{s}) ↔ A_{1}(C_{2v}) optical transition. Details on the strain dependence for the higher energy transition is shown in the Supplementary Note 3.
It is intriguing to carry out group theory analysis before starting the numerical ab initio calculations. The detailed general description about the multielectron configurations and their interaction with strain can be found in the “Methods”, that we apply to the V_{N}N_{B} quantum emitter. The analysis is performed for the C_{2v} symmetry as the excited state transforms within C_{2v} symmetry whereas the C_{s} ground state follows the same analysis taking into account the fact that C_{s} is a subgroup of the C_{2v} symmetry. Within C_{2v} symmetry for the axial strain, the ZPL shift upon strain is given by
where \({\hat{\varepsilon }}^{{A}_{1}}\) is the strain tensor applying the strain parallel to the C_{2} symmetry axis (axial strain) and \({\hat{\Delta }}^{{A}_{1}}\) is associated with the energy shifts for the corresponding electronic states (see “Methods”). The C_{s} configuration can then be described as an outofplane distortion due to a builtin strain that acts perpendicular to the basal plane. This mixes a_{1} and b_{2} orbitals through B_{2} component of the strain as explained in “Methods”. Since the energy spacing between the a_{1} and b_{2} levels is much larger than the typical deformation values this mixture should not significantly alter the energy shift of δ upon applying basal uniaxial strain. Hence, the energy shift in Eq. (1) is a good approximation. This ZPL energy shift is expected to depend linearly on strain for the B_{2}(C_{s}) ↔ A_{1}(C_{2v}) optical transition. The magnitude of the strainZPL coupling as a function of the orientation of the applied uniaxial strain cannot be determined by means of group theory. We, therefore, apply DFT simulations to quantify the strength of the strainZPL coupling for V_{N}N_{B} emission.
We calculate the ZPL energy as the total energy difference between the excited state and the ground state in the global energy minimum of the corresponding electronic configuration (see “Methods”). The strain is modeled by changing the lattice constant of the employed supercell (see Fig. 2a, where the parallel (red) and perpendicular (black) components of the strain are depicted). The corresponding curves for the ZPL shift are plotted in Fig. 2b as a function of the applied strain. The calculated ZPL of V_{N}N_{B} without strain is 1.90 eV for the B_{2}(C_{s}) ↔ A_{1}(C_{2v}) optical transition, which is very close to the observed photoemission at 1.95 eV of certain SPEs^{14,17}. As expected, the curves are quasilinear within (−1; +2)% strain region, where we use − and + for compressive and tensile strain, respectively. For both strain directions, we obtain a giant, 12 eV/strain shift in the ZPL energy which results in a huge variation in the emission wavelength as a function of strain. For this quantum emitter, the tensile axial (perpendicular) uniaxial strain causes blueshift (redshift) in the ZPL emission. The variation of the ZPL energy with strain is about 100 nm and we believe our proposed mechanism yields the most plausible explanation for the observed variation of ZPL energies for certain SPEs.
In order to further study these results, we plot the shift of the defect levels upon the applied strain in the corresponding ground and excited states in Fig. 2c–f. Upon applying tensile axial strain, the a_{1} level in the ground state shifts down whereas the occupied b_{2} level shifts up in the ground and excited electronic configurations, respectively. This will result in a blueshift in the ZPL. Upon applying tensile perpendicular strain, the a_{1} level shifts up steeply whereas the occupied b_{2} level moderately shifts up in the ground and excited electronic configurations, respectively. As a consequence, the two levels approach each other upon applying this strain which results in a redshift in the ZPL energy. This is in agreement with the observations reported in ref. ^{40} where the ZPL energy shift of the studied emitters exhibits a linear dependence on the applied strain. Furthermore, the three different possible orientations of the defect axis and our results on the blueshift (redshift) of the emission line for armchair (zigzag) strain explains the experimentally observed behavior^{40}.
Role of membrane phonons
We find that the phonon modes with atoms moving outofplane, i.e., membrane modes, play a crucial role in the optical activation of the V_{N}N_{B} defect in hBN (see Supplementary Note 4). The modes are mainly contributed from the substitutional nitrogen atom. These membrane B_{2} phonons couple the ^{2}A_{1} excited state and ^{2}B_{2} ground state where the ground state will be unstable at the C_{2v} symmetry configuration and is distorted to C_{s} configuration, whereas the excited state remains stable at C_{2v} configuration. This suggests a strong pseudo Jahn–Teller (PJT)^{47} system which is illustrated in Fig. 3a.
We depict the adiabatic potential energy surface (APES) of the ^{2}B_{2} ground state of V_{N}N_{B} in Fig. 3b as obtained by HSE DFT calculations. We note that DFT calculation with a less accurate semilocal functional than HSE (see “Methods”) obtained a similar APES in a previous study^{46}. The Jahn–Teller energy is 95 meV. The solution of this strongly coupled electron–phonon system^{47} is
where Q is the normal coordinate of the effective phonon mode ω with the corresponding mass M, Δ is the energy gap between the ground state and excited state at the high symmetry point (C_{2v} configurations) and F is the strength of electron–phonon coupling. In the dimensionless generalized coordinate system, we obtain F = 178 meV and \(\hbar\)ω = 23 meV. This electronphonon coupling parameter is about 2.5× larger than that of NV center in diamond^{48}. This indicates a giant electronphonon interaction for the vacancy type defects in hBN. We solved the electronphonon PJT system quantum mechanically and found that the jumping rate between the two minima is 8.4 kHz. This is a relatively slow rate where the optical Rabioscillation between the ground and excited states should be more than two orders of magnitude faster (see Supplementary Note 5). This means that the ground state of ^{2}B_{2} is a static PJT system, and the ground state indeed exhibits low C_{s} symmetry.
We note here that strong electronphonon interaction with membrane phonons play an important role in the activation of intersystem crossing process in boronvacancy optically detected magnetic resonance center^{49}. This type of phonon modes can be found only in 2D solidstate systems. These findings demonstrate that the membrane phonon modes are major actors in the magnetooptical properties of solidstate defect quantum bits and SPEs.
Comparison to known SPEs
Many SPEs were reported in multilayer hBN structures. The physics of the membrane phonons and their effects on the optical properties for V_{N}N_{B} defect are mainly discussed here based on the results achieved in monolayer hBN, which directly models the single sheet hBN flakes and can provide a tentative insight to the top layer of multilayered hBN structures. We extend our study to the bulk hBN model (see “Methods”) which corresponds to such V_{N}N_{B} defects that are buried deep in the multilayer hBN structures. We find that the physics of the membrane phonons is the same: PJT occurs in the presence of van der Waals interaction but it suppresses the Jahn–Teller energy to 50.5 meV. Nevertheless, the resulting electronphonon coupling remains strong with F = 193 meV (see Supplementary Note 6). The weak interlayer interaction has little effect on the quantum emission of V_{N}N_{B} as the ZPL energies and the ZPL energy shifts upon strain change <0.01 eV compared to the results obtained in the monolayer hBN.
Most of the SPEs in hBN were first observed at room temperature^{10,14} which emit in the visible region with various wavelength. Based on the ZPL emission region and the contribution of the phonon sideband (PSB) to the total emission, the visible SPEs were categorized into two groups according to early measurements^{14}: Group1 with ZPL energies at 1.8–2.2 eV and with significant PSB contribution; Group2 with ZPL energies at 1.4–1.8 eV with small PSB contribution. Group1 emitters often showed an asymmetry in the ZPL lineshape at room temperature that was attributed to electronphonon effects^{10}. Recently, lowtemperature observation challenged this idea where they could decompose the PL spectra into two emitter components that could naturally explain the asymmetry of the spectrum at elevated temperatures where the spectra of the two emitters cannot be resolved^{50}. They found that the two emitters have ZPL energies with about 15 nm apart but very similar PSBs and also with a large variation of the ZPL wavelength of these pairs between 600 nm (2.06 eV) and 720 nm (1.72 eV) where the variation was tentatively attributed to strain^{50}. Based on the calculated ZPL energy and strong electronphonon coupling of the V_{N}N_{B} defect, the V_{N}N_{B} definitely belongs to the Group1 emitters and the calculated strain dependence of the calculated ZPL energies can cover the range of the observed ZPL energies by assuming about ±2% strain in the hBN lattice. Parallel to our study, nanobeam electron diffraction has been applied to correlate the emitter optical emission with the emitter’s local inplane strain and found that about ±2% local strain can appear in hBN flakes^{39}. They have found SPEs at 630 nm and 705 nm ZPL energies that are most likely connected by strain^{39}. The V_{N}N_{B} defect can produce this giant shift of ZPL wavelength upon about 1.5% strain which is not far from the experimental observations claiming about 1%^{39}. We note that unambiguous identification of the SPEs require further work from experiments and theory. Nevertheless, our study shows by means of accurate DFT calculations that the optical response of V_{N}N_{B} defect to strain is indeed very sensitive. Further theoretical studies might reveal other defects in hBN with similar properties.
Implications towards quantum information processing applications
The strong electron–phonon interaction implies that the optical properties of vacancy type quantum emitters in hBN can vary significantly with strain. Indeed, our DFT simulations show a giant shift in the ZPL emission at strain values that can appear in hBN. Compared to the SPEs in threedimensional (3D) materials such as diamond and SiC, the SPEs in 2D hBN are not buried by high refractive index medium which makes collection efficiency of the emitted light much higher than that for 3D materials. Integration of hBN based SPEs with nanophotonic devices offers a promising path to engineer quantum gates and circuitry which are key building blocks of quantum information processing and our work provides crucial implications in this field. First, we report the activation of the forbidden optical transition due to the strong electronphonon coupling. The electronphonon coupling reduces the symmetry of the ground state of the defect and it is a static PJT system. Second, we find the giant shift of the ZPL spectrum with external strain and propose a particular explanation for the phenomena. Until now, the spectral shift on SPEs in hBN observed in our work is the largest known so far. Third, our result provides an analysis method for similar quantum emitters with varying ZPL energies and emission intensities in hBN. Strain might be a reason for the spectral broadening and can influence the optical contrast and quantum efficiency. This might be harnessed to use this quantum emitter for realizing stress detector at the nanoscale as well as nanomechanical devices for quantum technologies.
In this paper, we performed a thorough group theory analysis and DFT calculations on the effect of strain on nitrogen antisitevacancy color center in hBN. We find a very strong electronphonon interaction that can activate photoluminescence, and is responsible for the giant ZPL shift upon the applied strain. The behavior of the straininduced energy shift is correlated with the experimental observations further revealing their microscopic nature.
Methods
Group theory analysis on strain
In this section, we provide a formulation that describes the effect of a local strain of the point defects. The derived Hamiltonian is general and is then applied to the V_{N}N_{B} quantum emitter in hBN.
When considering point defects as candidates of the color centers in hBN, the local strain manifests itself in modifying the atomic distances, which in turn, leads to the modification of the molecular orbitals (MOs) around the defect. Any change in the properties of MOs resultin a redistribution of the energy states in the band structure of the host solid. Therefore, the strain directly couples to the electronic degreesoffreedom of the color center. The coupling strength is called deformation potential.
We derive the Hamiltonian of the defect under local strain in the following way: We start by assuming that the color center is composed of N_{e} valance electrons that are mostly isolated from the rest of lattice and gather around N_{n} nuclei forming up the defect. Note that this is a fairly good assumption by looking at the MOs drawn by DFT belonging to the defect states^{27}. The attractive Coulomb energy imposed from nuclei on the electrons is then given by
where R_{jk} = ∣x_{k} − x_{j}∣ with x_{k} position of the nuclei, while x_{j} denotes the location of the jth electron. Here, \(Z^{\prime}_k\) is the effective atomic number (screened nuclear charge) of the ion. The local strain displaces ions involved in the point defect x → x + δx and thus their Coulomb interaction. In the first order of accuracy we get \(V( {\bf{x}}{\bf{x}} )\,\longrightarrow \,V( {\bf{x}}+\delta {\bf{x}}{\bf{x}} )\approx V(R)+{\left[{\boldsymbol{\nabla }}V(R)\right]}_{0}\cdot \delta {\bf{x}}\), where δx is the infinitesimal displacement of the nuclei imposed by the local strain. The value of displacement is obtained by \(\delta {\bf{x}}={\bf{X}}\cdot \hat{\varepsilon }\) with the strain tensor \(\hat{\varepsilon }\). The electron–strain interaction Hamiltonian is then summed over all such firstorder variational terms
where we have introduced \({\hat{\Delta }}_{j}={{\bf{x}}}_{j}{{\mathbf{\Xi }}}_{j}\), a dyadic whose components have different group symmetries denoted by α, while \({{\mathbf{\Xi }}}_{j}={\sum }_{k}{\left[\frac{1}{{R}_{jk}}\frac{\partial {V}_{jk}}{\partial {R}_{jk}}\right]}_{0}{{\bf{x}}}_{k}\) is the deformation potential. Here, we have assumed that the radial component of the gradient is the dominant one and neglected an irrelevant constant term. The former is a valid assumption as the total Coulomb attraction of the ions is more or less a central force^{51,52,53}.
The electronic configuration of this defect are given in Table 1. Given the orbital symmetries of these states and the following table of symmetry for strain components the group theory can predict that the only nonzero irreducible representations of the \(\hat{\Delta }\) when sandwiched between two singleelectron orbitals are:
The effect of strain on multielectron states is a nonequal shift in their energy levels imposed by the axial components of the strain as well as inducing an interaction between the states via the axial and nonaxial strain components. The amount of shift only depends on the electronic states and its relations for the ground and excited states are δ_{0}, δ_{1}, and δ_{2}, respectively. The strain prompted interstate interactions are much smaller than the energy difference between the levels, hence one neglects them in an adiabatic manner. The explicit form of the energy shifts are
In the main text we have adopted the approximation that \({\hat{\varepsilon }}^{A^{\prime} }\langle \cdot  {\hat{\Delta }}^{A^{\prime} } \cdot \rangle \approx {\hat{\varepsilon }}^{{A}_{1}}\langle \cdot  {\hat{\Delta }}^{{A}_{1}} \cdot \rangle\) which is reasonable owing to the fact that C_{s} is a subgroup of C_{2v} and that the molecular orbitals retain their form.
Details on DFT calculations
The calculations are performed based on the DFT implemented in Vienna ab initio simulation package (VASP)^{54,55}. Projector augmented wave (PAW) is used to separate the valence electrons from the core part. The energy cutoff for the expansion of the planewave basis set was set to 450 eV which is enough to provide an accurate result. The screened hybrid density functional of Heyd, Scuseria, and Ernzerhof (HSE)^{56} is used to calculate to band gap and defect levels. Within this approach, the shortrange exchange potential is described by mixing with part of nonlocal Hartree–Fock exchange and this also provides reasonable geometry optimization of the dynamic Jahn–Teller system. The HSE hybrid functional with mixing parameter of 0.32 closely reproduces the experimental band gap at 5.9 eV. To apply the strain along the parallel and perpendicular directions to the C_{2} axis, a \(9\times 5\sqrt{3}\) supercell is constructed through changing the basis to the orthorhombic structure. The perfect supercell contains 160 atoms which is sufficient to avoid the defectdefect interaction, and the single Γpoint scheme is converged for the kpoint sampling for the Brillouin zone. The coordinates of atoms are allowed to relax until the force is <0.01 eV/Å. The excited state was calculated within ΔSCF method^{57} that we previously applied to point defects in hBN too^{27}. For the bulk simulation, a periodic model containing two layers are used, where one perfect layer is placed above the defective layer. The optimized interlayer distance is 3.37 Å with DFTD3 method of Grimme^{58}.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Code availability
The codes that were used in this study are available upon request to the corresponding author.
References
 1.
Srivastava, A. et al. Optically active quantum dots in monolayer wse2. Nat. Nanotechnol. 10, 491–496 (2015).
 2.
Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltagecontrolled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
 3.
PalaciosBerraquero, C. et al. Atomically thin quantum lightemitting diodes. Nat. Commun. 7, 12978 (2016).
 4.
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Twodimensional material nanophotonics. Nat. Photon. 8, 899 (2014).
 5.
Clark, G. et al. Single defect lightemitting diode in a van der waals heterostructure. Nano Lett. 16, 3944–3948 (2016).
 6.
Shiue, R.J. et al. Active 2D materials for onchip nanophotonics and quantum optics. Nanophotonics 6, 1329– 1342 (2017).
 7.
Lee, S. et al. Flexible organic solar cells composed of p3ht:pcbm using chemically doped graphene electrodes. Nanotechnology 23, 344013 (2012).
 8.
Abderrahmane, A. et al. High photosensitivity fewlayered mose2 backgated fieldeffect phototransistors. Nanotechnology 25, 365202 (2014).
 9.
Li, X., Yin, J., Zhou, J. & Guo, W. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 25, 105701 (2014).
 10.
Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 (2016).
 11.
Abdi, M., Hwang, M.J., Aghtar, M. & Plenio, M. B. Spinmechanics with color centers in hexagonal boron nitride membranes. Phys. Rev. Lett. 119, 233602 (2017).
 12.
Aharonovich, I., Englund, D. & Toth, M. Solidstate singlephoton emitters. Nat. Photon. 10, 631 (2016).
 13.
Golberg, D. et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010).
 14.
Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331 (2016).
 15.
Tran, T. T. et al. Quantum emission from defects in singlecrystalline hexagonal boron nitride. Phys. Rev. Appl. 5, 034005 (2016).
 16.
Jungwirth, N. R. et al. Temperature dependence of wavelength selectable zerophonon emission from single defects in hexagonal boron nitride. Nano Lett. 16, 6052 (2016).
 17.
Martinez, L. J. et al. Efficient single photon emission from a highpurity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405(R) (2016).
 18.
Schell, A. W., Tran, T. T., Takashima, H., Takeuchi, S. & Aharonovich, I. Nonlinear excitation of quantum emitters in twodimensional hexagonal boron nitride. ACS Photonics 4, 761–767 (2017).
 19.
Shotan, Z. et al. Photoinduced modification of singlephoton emitters in hexagonal boron nitride. ACS Photonics 3, 2490 (2016).
 20.
Jungwirth, N. R. & Fuchs, G. D. Optical absorption and emission mechanisms of single defects in hexagonal boron nitride. Phys. Rev. Lett. 119, 057401 (2017).
 21.
Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sidebandfree emission spectra. ACS Nano 11, 6652–6660 (2017).
 22.
Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328 (2017).
 23.
Museur, L., Feldbach, E. & Kanaev, A. Defectrelated photoluminescence of hexagonal boron nitride. Phys. Rev. B 78, 155204 (2008).
 24.
Bourrellier, R. et al. Bright uv single photon emission at point defects in hbn. Nano Lett. 16, 4317 (2016).
 25.
Vuong, T. Q. P. et al. Phononphoton mapping in a color center in hexagonal boron nitride. Phys. Rev. Lett. 117, 097402 (2016).
 26.
Tawfik, S. A. et al. Firstprinciples investigation of quantum emission from hbn defects. Nanoscale 9, 13575 (2017).
 27.
Abdi, M., Chou, J.P., Gali, A. & Plenio, M. B. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics 5, 1967–1976 (2018).
 28.
Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).
 29.
Turiansky, M. E., Alkauskas, A., Bassett, L. C. & Van de Walle, C. G. Dangling bonds in hexagonal boron nitride as singlephoton emitters. Phys. Rev. Lett. 123, 127401 (2019).
 30.
MackoitSinkeviien, M., Maciaszek, M., Van de Walle, C. G. & Alkauskas, A. Carbon dimer defect as a source of the 4.1 ev luminescence in hexagonal boron nitride. Appl. Phys. Lett. 115, 212101 (2019).
 31.
Chejanovsky, N. et al. Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett. 16, 7037 (2016).
 32.
Ziegler, J. et al. Deterministic quantum emitter formation in hexagonal boron nitride via controlled edge creation. Nano Lett. 19, 2121–2127 (2019).
 33.
Toledo, J. R. et al. Electron paramagnetic resonance signature of point defects in neutronirradiated hexagonal boron nitride. Phys. Rev. B 98, 155203 (2018).
 34.
Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magneticfielddependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).
 35.
Chejanovsky, N. et al. Single spin resonance in a van der Waals embedded paramagnetic defect. Preprint at https://arxiv.org/abs/1906.05903 (2019).
 36.
Gottscholl, A. et al. Initialization and readout of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).
 37.
Turiansky, M. E., Alkauskas, A., Bassett, L. C. & Van de Walle, C. G. Dangling bonds in hexagonal boron nitride as singlephoton emitters. Phys. Rev. Lett. 123, 127401 (2019).
 38.
Bommer, A. & Becher, C. New insights into nonclassical light emission from defects in multilayer hexagonal boron nitride. Nanophotonics 8, 2041–2048 (2019).
 39.
Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).
 40.
Grosso, G. et al. Tunable and highpurity room temperature singlephoton emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).
 41.
Abdi, M. & Plenio, M. B. Analog quantum simulation of extremely subohmic spinboson models. Phys. Rev. A 98, 040303(R) (2018).
 42.
Abdi, M. & Plenio, M. B. Quantum effects in a mechanically modulated singlephoton emitter. Phys. Rev. Lett. 122, 023602 (2019).
 43.
Sajid, A., Reimers, J. R. & Ford, M. J. Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation. Phys. Rev. B 97, 064101 (2018).
 44.
Wu, F., Smart, T. J., Xu, J. & Ping, Y. Carrier recombination mechanism at defects in wide band gap twodimensional materials from first principles. Phys. Rev. B 100, 081407 (2019).
 45.
Reimers, J. R., Sajid, A., Kobayashi, R. & Ford, M. J. Understanding and calibrating densityfunctionaltheory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride. J. Chem. Theory Comput. 14, 1602–1613 (2018).
 46.
Noh, G. et al. Stark tuning of singlephoton emitters in hexagonal boron nitride. Nano Lett. 18, 4710–4715 (2018).
 47.
Bersuker, I. The JahnTeller Effect (Cambridge University Press, 2006).
 48.
Thiering, G. & Gali, A. Ab initio calculation of spinorbit coupling for an nv center in diamond exhibiting dynamic jahnteller effect. Phys. Rev. B 96, 081115 (2017).
 49.
Ivády, V. et al. Ab initio theory of negatively charged boron vacancy qubit in hBN. npj Comput. Mater. 6, 41 (2020).
 50.
Bommer, A. & Becher, C. New insights into nonclassical light emission from defects in multilayer hexagonal boron nitride. Nanophotonics 8, 2041–2048 (2019).
 51.
Boldrin, L., Scarpa, F., Chowdhury, R. & Adhikari, S. Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011).
 52.
Peng, Q., Ji, W. & De, S. Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput. Mater. Sci. 56, 11 (2012).
 53.
Singh, S. K., NeekAmal, M., Costamagna, S. & Peeters, F. M. Thermomechanical properties of a single hexagonal boron nitride sheet. Phys. Rev. B 87, 184106 (2013).
 54.
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set. Phys. Rev. B 54, 11169–11186 (1996).
 55.
Kresse, G. & Furthmüller, J. Efficiency of abinitio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 16, 15–50 (1996).
 56.
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
 57.
Gali, A., Janzén, E., Deák, P., Kresse, G. & Kaxiras, E. Theory of spinconserving excitation of the n − V− center in diamond. Phys. Rev. Lett. 103, 186404 (2009).
 58.
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (dftd) for the 94 elements hpu. J. Chem. Phys. 132, 154104 (2010).
Acknowledgements
A.G. acknowledges the Hungarian NKFIH grant No. KKP129866 of the National Excellence Program of Quantumcoherent materials project, the National Quantum Technology Program (Grant No. 20171.2.1NKP201700001), and the EU H2020 Quantum Technology Flagship project ASTERIQS (Grant No. 820394). M.B.P. acknowledges support from the ERC Synergy grant BioQ (Grant No. 319130), the EU H2020 Quantum Technology Flagship project ASTERIQS (Grant No. 820394), the EU H2020 Project Hyperdiamond (Grant No. 667192), a DFG Reinhart Koselleck project and the BMBF via NanoSpin and DiaPol. M.A. acknowledges support by INSF (Grant No. 98005028).
Author information
Affiliations
Contributions
S.L. carried out the DFT calculations under the supervision of J.P.C., A.H., and A.G. M.A. developed the group theory analysis with M.B.P. P.U. and G.T. developed and applied the electron–phonon coupling theory on the defect under the supervision of A.G. All authors contributed to the discussion and writing the manuscript. A.G. conceived and led the entire scientific project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, S., Chou, JP., Hu, A. et al. Giant shift upon strain on the fluorescence spectrum of V_{N}N_{B} color centers in hBN. npj Quantum Inf 6, 85 (2020). https://doi.org/10.1038/s4153402000312y
Received:
Accepted:
Published:
Further reading

Stone–Wales defects in hexagonal boron nitride as ultraviolet emitters
npj Computational Materials (2020)

Theoretical study of quantum emitters in twodimensional silicon carbide monolayers
Physical Review B (2020)