Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular-level carbon traits underlie the multidimensional fine root economics space

Subjects

Abstract

Carbon influences the evolution and functioning of plants and their roots. Previous work examining a small number of commonly measured root traits has revealed a global multidimensionality of the resource economics traits in fine roots considering carbon as primary currency but without considering the diversity of carbon-related traits. To address this knowledge gap, we use data from 66 tree species from a tropical forest to illustrate that root economics space co-varies with a novel molecular-level traits space based on nuclear magnetic resonance. Thinner fine roots exhibit higher proportions of carbohydrates and lower diversity of molecular carbon than thicker roots. Mass-denser fine roots have more lignin and aromatic carbon compounds but less bioactive carbon compounds than lighter roots. Thus, the transition from thin to thick fine roots implies a shift in the root carbon economy from ‘do-it-yourself’ soil exploration to collaboration with mycorrhizal fungi, while the shift from light to dense fine roots emphasizes a shift from acquisitive to conservative root strategy. We reveal a previously undocumented role of molecular-level carbon traits that potentially undergird the multidimensional root economics space. This finding offers new molecular insight into the diversity of root form and function, which is fundamental to our understanding of plant evolution, species coexistence and adaptations to heterogeneous environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic relationships and 13 root traits for 66 tropical tree species.
Fig. 2: Coordination between the 2D root functional trait spaces and the molecular-level root carbon traits.
Fig. 3: Relationships between cell wall chemistry and morphology in fine roots.
Fig. 4: Conceptual framework of the 2D root functional traits space.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within this paper and its Supplementary Information. The raw data in this study are available via Figshare at https://doi.org/10.6084/m9.figshare.24218970 (ref. 73). Correspondence and requests for materials should be addressed to J.W. (wangjj@sustech.edu.cn). Literature data were extracted from Fine-Root Ecology Database 3.0 (https://roots.ornl.gov/)62.

Code availability

The code utilized for this study is publicly available and is hosted in figshare at https://doi.org/10.6084/m9.figshare.24218970 (ref. 73).

References

  1. Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42–59 (2021).

    Article  PubMed  Google Scholar 

  5. Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article  Google Scholar 

  6. Zhang, Y. et al. The worldwide allometric relationship in anatomical structures for plant roots. Plant Divers. 45, 621–629 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Suseela, V. & Tharayil, N. Decoupling the direct and indirect effects of climate on plant litter decomposition: accounting for stress-induced modifications in plant chemistry. Glob. Change Biol. 24, 1428–1451 (2018).

    Article  Google Scholar 

  8. Weng, J. K., Lynch, J. H., Matos, J. O. & Dudareva, N. Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat. Chem. Biol. 17, 1037–1045 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article  Google Scholar 

  10. McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).

    Article  PubMed  Google Scholar 

  11. Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).

    Article  PubMed  Google Scholar 

  12. Wang, J. J., Tharayil, N., Chow, A. T., Suseela, V. & Zeng, H. Phenolic profile within the fine-root branching orders of an evergreen species highlights a disconnect in root tissue quality predicted by elemental- and molecular-level carbon composition. New Phytol. 206, 1261–1273 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Mueller, K. E., Polissar, P. J., Oleksyn, J. & Freeman, K. H. Differentiating temperate tree species and their organs using lipid biomarkers in leaves, roots and soil. Org. Geochem. 52, 130–141 (2012).

    Article  CAS  Google Scholar 

  14. Xia, M., Valverde-Barrantes, O. J., Suseela, V., Blackwood, C. B. & Tharayil, N. Coordination between compound-specific chemistry and morphology in plant roots aligns with ancestral mycorrhizal association in woody angiosperms. New Phytol. 232, 1259–1271 (2021).

    Article  PubMed  Google Scholar 

  15. Sun, T. et al. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl Acad. Sci. USA 115, 10392–10397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suseela, V., Tharayil, N., Orr, G. & Hu, D. Chemical plasticity in the fine root construct of Quercus spp. varies with root order and drought. New Phytol. 228, 1835–1851 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Poirier, V., Roumet, C. & Munson, A. D. The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 120, 246–259 (2018).

    Article  CAS  Google Scholar 

  18. Du, F. & Jiao, Y. L. Mechanical control of plant morphogenesis: concepts and progress. Curr. Opin. Plant Biol. 57, 16–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Hofhuis, H. et al. Morphomechanical innovation drives explosive seed dispersal. Cell 166, 222–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coen, E. & Cosgrove, D. J. The mechanics of plant morphogenesis. Science 379, eade8055 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, B., Gao, Y., Zhang, L. & Zhou, Y. The plant cell wall: biosynthesis, construction, and functions. J. Integr. Plant Biol. 63, 251–272 (2021).

    Article  PubMed  Google Scholar 

  22. Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, C. T. & Kieber, J. J. Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant Biol. 71, 39–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. Plant Physiology and Development (Sinauer, 2015).

  25. Weng, J.-K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1667–1670 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Lux, A., Luxová, M., Abe, J. & Morita, S. Root cortex: structural and functional variability and responses to environmental stress. Root Res. 13, 117–131 (2004).

    Article  Google Scholar 

  27. Buchanan, B. B., Gruissem, W. & Jones, R. L. Biochemistry and Molecular Biology of Plants 2nd edn (Wiley Blackwell, 2015).

  28. Xia, M., Valverde-Barrantes, O. J., Suseela, V., Blackwood, C. B. & Tharayil, N. Characterizing natural variability of lignin abundance and composition in fine roots across temperate trees: a comparison of analytical methods. New Phytol. 236, 2358–2373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kögel-Knabner, I. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80, 243–270 (1997).

    Article  Google Scholar 

  30. Hall, S. J., Ye, C. L., Weintraub, S. R. & Hockaday, W. C. Molecular trade-offs in soil organic carbon composition at continental scale. Nat. Geosci. 13, 687–692 (2020).

    Article  CAS  Google Scholar 

  31. Roumet, C. et al. Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol. 210, 815–826 (2016).

    Article  PubMed  Google Scholar 

  32. Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).

    Article  PubMed  Google Scholar 

  34. Hogan, J. A. et al. Functional variability in specific root respiration translates to autotrophic differences in soil respiration in a temperate deciduous forest. Geoderma 432, 116414 (2023).

    Article  Google Scholar 

  35. Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119 (2022).

    Article  PubMed  Google Scholar 

  36. Kelly-Bellow, R. et al. Brassinosteroid coordinates cell layer interactions in plants via cell wall and tissue mechanics. Science 380, 1275–1281 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649–660 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Banasiak, J., Jamruszka, T., Murray, J. D. & Jasinski, M. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume–rhizobium symbioses. Plant Physiol. 187, 2071–2091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Assefa, D., Godbold, D. L., Belay, B., Abiyu, A. & Rewald, B. Fine root morphology, biochemistry and litter quality indices of fast- and slow-growing woody species in Ethiopian highland forest. Ecosystems 21, 482–494 (2018).

    Article  CAS  Google Scholar 

  42. Zhao, Q. Lignification: flexibility, biosynthesis and regulation. Trends Plant Sci. 21, 713–721 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Mao, Z. et al. Mechanical traits of fine roots as a function of topology and anatomy. Ann. Bot. 122, 1103–1116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Chang, H. et al. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors. Nat. Commun. 13, 6258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rich, M. K., Schorderet, M. & Reinhardt, D. The role of the cell wall compartment in mutualistic symbioses of plants. Front. Plant Sci. 5, 238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.funk-0035-2016 (2017).

  48. Kang, X. et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun. 9, 2747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yoshida, M., Murai, T. & Moriya, S. 13C NMR spectra of plant pathogenic fungi. Agric. Biol. Chem. 48, 909–914 (1984).

    CAS  Google Scholar 

  50. Kalyuzhny, M., Lake, J. K., Wright, S. J. & Ostling, A. M. Pervasive within-species spatial repulsion among adult tropical trees. Science 381, 563–568 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Hogan, J. A. et al. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. New Phytol. 238, 1849–1864 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Withington, J. M., Reich, P. B., Oleksyn, J. & Eissenstat, D. M. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monogr. 76, 381–397 (2006).

    Article  Google Scholar 

  53. Zhang, Y. et al. The origin of bi-dimensionality in plant root traits. Trends Ecol. Evol. 39, 78–88 (2024).

    Article  PubMed  Google Scholar 

  54. Su, Y. et al. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. Nat Plants 9, 1968–1977 (2023).

    Article  PubMed  Google Scholar 

  55. Walker, T. W. N. et al. Leaf metabolic traits reveal hidden dimensions of plant form and function. Sci. Adv. 9, eadi4029 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He, H. et al. Reference carbon cycle dataset for typical Chinese forests via colocated observations and data assimilation. Sci. Data 8, 42 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flora of China Editorial Committee. Flora of China (Science Press, 2004).

  58. Guo, D. et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 180, 673–683 (2008).

    Article  PubMed  Google Scholar 

  59. Nelson, P. N. & Baldock, J. A. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry 72, 1–34 (2005).

    Article  CAS  Google Scholar 

  60. Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780–19785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Soest, P. J. Use of detergents in analysis of fibrous feeds. II. A rapid method for determination of fiber and lignin. J. Assoc. Off. Agric. Chem. 46, 829–835 (1963).

    CAS  Google Scholar 

  62. Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).

    Article  PubMed  Google Scholar 

  63. Birouste, M., Zamora-Ledezma, E., Bossard, C., Perez-Ramos, I. M. & Roumet, C. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content. Plant Soil 374, 299–313 (2014).

    Article  CAS  Google Scholar 

  64. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  65. Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Article  Google Scholar 

  66. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  67. Harrell, F. E. Hmisc: A package of miscellaneous R functions. CRAN https://cran.r-project.org/package=Hmisc (2014).

  68. Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. CRAN https://cran.r-project.org/package=factoextra (2020).

  69. Chacón, J. E. & Duong, T. Multivariate Kernel Smoothing and its Applications (CRC Press, 2018).

  70. Oksanen, J. et al. vegan: Community ecology package. CRAN https://cran.r-project.org/package=vegan (2022).

  71. Pinheiro, J. et al. nlme: Linear and nonlinear mixed effects models. CRAN https://cran.r-project.org/package=nlme (2023).

  72. Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    Article  PubMed  Google Scholar 

  73. Wang, M. K. Data to support: Molecular-level carbon traits underlie the multi-dimensional fine root economics space. figshare https://doi.org/10.6084/m9.figshare.24218970 (2024).

  74. Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (42122054, 42192513, 42321004) to J.W.; the National Natural Science Foundation of China (32171746, 31670550) to D.K.; the Guangdong Basic and Applied Basic Research Foundation (2021B1515020082), Key Platform and Scientific Research Projects of Guangdong Provincial Education Department (2020KCXTD006), and Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (2023B1212060002) to J.W.; the Leading Talents of Basic Research in Henan Province to D.K.; the Natural Sciences and Engineering Research Council (NSERC) of Canada for support via the Tier 1 Canada Research Chair in Integrative Molecular Biogeochemistry to M.J.S.; a Swedish Research Council (Vetenskapsrådet) grant (2015-04214) to P.K.; the National Science Foundation: Biological Integration Institutes Grant (NSF-DBI-2021898) and Long Term Ecological Research Grant (NSF-DEB-1831944) to P.B.R.

Author information

Authors and Affiliations

Authors

Contributions

M.W., D.K. and J.W. conceptualized the project. M.W., D.K., J.W., X.M., Y.W. and Q.Y. developed the methodology. D.K., J.W., M.J.S., P.K. and P.B.R. acquired funding. D.K. and J.W. administered the project. M.W., D.K. and J.W. wrote the original draft. M.W., D.K., P.K., O.J.V.-B., M.J.S., H.Z., P.B.R., J.B., N.T. and J.W. reviewed and edited the paper.

Corresponding authors

Correspondence to Deliang Kong or Junjian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks J. Aaron Hogan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic relationships for 66 tree species spanning three major angiosperm lineages (40 rosids in blue, 7 asterids in red, and 19 magnoliids in green).

The phylogenetic relationships among plant species were extracted from a molecular phylogenic tree described in Zanne et al.74.

Extended Data Fig. 2 Matrix of Pearson’s correlation coefficients among 13 root traits for 66 tropical tree species.

The correlation matrix is arranged in the hierarchical clustering order. A bigger circle denotes a stronger correlation. Significance level of correlations is indicated; ***, P < 0.001; **, P < 0.01; *, P < 0.05. Significance was tested using a two-sided t-test.

Extended Data Fig. 3 Simulation analyses for coordination between the two-dimensional root functional trait spaces and the molecular-level root carbon traits.

Observed correlations (vertical lines) relative to the distribution when scores were randomly simulated (a) between PC1 scores of 13C-NMR-based carbon traits in the first principal component (including O-aromatic, aromatic, O2-alkyl, carbonyl and carboxyl, N-alkyl/methoxy, and alkyl C) and PC1 scores of root economics traits in the first principal component (including root tissue density and root nitrogen concentration); (b) between PC2 scores of 13C-NMR-based carbon traits in the second principal component (including O-alkyl and H’RSC) and PC2 scores of root economics traits in the second principal component (including root diameter and specific root length). Significance was tested using a two-sided permutation test.

Extended Data Fig. 4 Coordination between the two-dimensional root functional trait planes and the molecular-level root carbon traits based on phylogenetic-informed PCAs (pPCAs).

(a) The two-dimensional root economic traits space. (b) Root carbon traits space, including total root carbon and molecular-level carbon traits. (c) Integrating both commonly-measured root functional traits and molecular-level carbon traits in the two-dimensional root functional trait space. The color gradient indicates species occurrence probability in the trait space defined by PC1 and PC2, with red indicating high occurrence and white indicating low occurrence. Contour lines indicate 0.50 and 0.90 quantiles. The commonly-measured root functional traits are root diameter, specific root length, root tissue density, and root nitrogen concentration. The carbon traits include total root carbon concentration, and 8 molecular-level carbon traits (alkyl, N-alkyl/methoxy, O-alkyl, di-O-alkyl, aromatic, O-aromatic, carbonyl/carboxyl, and structural carbon trait diversity (H′RSC)).

Extended Data Fig. 5 Simulation analyses for coordination between the two-dimensional root functional trait spaces and the molecular-level root carbon traits after controlling for phylogeny.

Observed correlations (vertical lines) relative to the distribution when scores were randomly simulated (a) between PC1 scores of 13C-NMR-based carbon traits (including O-aromatic, aromatic, O2-alkyl, carbonyl and carboxyl, N-alkyl/methoxy, and alkyl C) and PC1 scores of root economics traits (including root tissue density and root nitrogen concentration) after controlling for phylogeny, and (b) between PC2 scores of 13C-NMR-based carbon traits in the second principal component (including O-alkyl and H’RSC) and PC2 scores of root economics traits (including root diameter and specific root length) after controlling for phylogeny. Significance was tested using a two-sided permutation test.

Extended Data Fig. 6 Different species in the two-dimensional root trait space.

Ordination of 66 tree species from three major clades, Asterids (in red), Magnolidds (in green) and Rosids (in blue), in the two-dimensional root trait space based on (a) principal component analysis and (b) phylogenetically-informed principal component analyses.

Supplementary information

Supplementary Information

Supplementary Text 1 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Kong, D., Mo, X. et al. Molecular-level carbon traits underlie the multidimensional fine root economics space. Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41477-024-01700-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing