Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1

Abstract

Cytokinins are essential for plant growth and development, and their tissue distributions are regulated by transmembrane transport. Recent studies have revealed that members of the ‘Aza-Guanine Resistant’ (AZG) protein family from Arabidopsis thaliana can mediate cytokinin uptake in roots. Here we present 2.7 to 3.3 Å cryo-electron microscopy structures of Arabidopsis AZG1 in the apo state and in complex with its substrates trans-zeatin (tZ), 6-benzyleaminopurine (6-BAP) or kinetin. AZG1 forms a homodimer and each subunit shares a similar topology and domain arrangement with the proteins of the nucleobase/ascorbate transporter (NAT) family. These structures, along with functional analyses, reveal the molecular basis for cytokinin recognition. Comparison of the AZG1 structures determined in inward-facing conformations and predicted by AlphaFold2 in the occluded conformation allowed us to propose that AZG1 may carry cytokinins across the membrane through an elevator mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of AZG1.
Fig. 2: The dimeric assembly of AZG1.
Fig. 3: The ligand recognition of AZG1.
Fig. 4: The H-bond network near the substrate-binding site.
Fig. 5: The proposed model of AZG1.

Similar content being viewed by others

Data availability

Structure coordinates and cryo-EM density maps have been deposited in the Protein Data Bank under accession numbers PDB 8IRL and EMD-35678 for AZG1apo/pH7.4; PDB 8IRM and EMD-35679 for AZG1adenine/pH5.5; PDB 8WO7 and EMD-37681 for AZG1 T440Y/apo/pH7.4; PDB 8IRO and EMD-35681 for AZG1tZ/pH7.4; PDB 8WMQ and EMD-37658 for AZG1 tZ/pH5.5; PDB 8IRN and EMD-35680 for AZG1BAP/pH7.4; and PDB 8IRP and EMD-35682 for AZG1kinetin/pH7.4. The AZG1 structure predicted by AlphaFold2 was downloaded from the AlphaFold Database (https://alphafold.ebi.ac.uk/entry/Q9SRK7). Other structure coordinates analysed in the paper can be downloaded from the Protein Data Bank under accession numbers PDB 5DA0 for Deinococcus geothermalis SLC26Dg; PDB 6KI1 for Synechocystis BicA; PDB 5I6C for Aspergillus nidulans UapA; and 5XLS for Escherichia coli UraA occluded state. Additional data supporting the findings in this study are provided in the Supplementary Information. Source data are provided with this paper. Uncropped images for Extended Data Figs. 2a and 3a,g,m are supplied in Source Data.

References

  1. Haberer, G. & Kieber, J. J. Cytokinins. New insights into a classic phytohormone. Plant Physiol. 128, 354–362 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakakibara, H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Werner, T. & Schmulling, T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 12, 527–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Pavlu, J. et al. Cytokinin at the crossroads of abiotic stress signalling pathways. Int. J. Mol. Sci. 19, 2450 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jameson, P. E. & Song, J. Cytokinin: a key driver of seed yield. J. Exp. Bot. 67, 593–606 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kieber, J. J. & Schaller, G. E. Cytokinin signaling in plant development. Development 145, dev149344 (2018).

    Article  PubMed  Google Scholar 

  7. Hirose, N. et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59, 75–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Werner, T., Motyka, V., Strnad, M. & Schmulling, T. Regulation of plant growth by cytokinin. Proc. Natl Acad. Sci. USA 98, 10487–10492 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nedved, D., Hosek, P., Klima, P. & Hoyerova, K. Differential subcellular distribution of cytokinins: how does membrane transport fit into the big picture? Int. J. Mol. Sci. 22, 3428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duran-Medina, Y., Diaz-Ramirez, D. & Marsch-Martinez, N. Cytokinins on the move. Front. Plant Sci. 8, 146 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tessi, T. M. et al. Arabidopsis AZG2 transports cytokinins in vivo and regulates lateral root emergence. New Phytol. 229, 979–993 (2021).

  12. Zurcher, E., Liu, J., di Donato, M., Geisler, M. & Muller, B. Plant development regulated by cytokinin sinks. Science 353, 1027–1030 (2016).

    Article  PubMed  Google Scholar 

  13. Ko, D. et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl Acad. Sci. USA 111, 7150–7155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tessi, T. M. et al. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. New Phytol. 238, 1924–1941 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Mansfield, T. A., Schultes, N. P. & Mourad, G. S. AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis. FEBS Lett. 583, 481–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Aloni, R., Aloni, E., Langhans, M. & Ullrich, C. I. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jing, H. & Strader, L. C. Interplay of auxin and cytokinin in lateral root development. Int. J. Mol. Sci. 20, 486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu, F. et al. Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maurino, V. G. et al. Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol. 47, 1381–1393 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Alguel, Y. et al. Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nat. Commun. 7, 11336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akyuz, N. et al. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 518, 68–73 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, I. et al. Glutamate transporters have a chloride channel with two hydrophobic gates. Nature 591, 327–331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Dong, Y. et al. Structure and mechanism of the human NHE1-CHP1 complex. Nat. Commun. 12, 3474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Paulino, C., Wohlert, D., Kapotova, E., Yildiz, O. & Kuhlbrandt, W. Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. eLife 3, e03583 (2014).

  32. Wohlert, D., Kuhlbrandt, W. & Yildiz, O. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. eLife 3, e03579 (2014).

  33. Coincon, M. et al. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23, 248–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Su, N. et al. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature 609, 616–621 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Z. et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 609, 611–615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ung, K. L. et al. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 609, 605–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arakawa, T. et al. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350, 680–684 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Thurtle-Schmidt, B. H. & Stroud, R. M. Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers. Proc. Natl Acad. Sci. USA 113, 10542–10546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhekova, H. R. et al. CryoEM structures of anion exchanger 1 capture multiple states of inward- and outward-facing conformations. Commun. Biol. 5, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chi, X. et al. Structural insights into the gating mechanism of human SLC26A9 mediated by its C-terminal sequence. Cell Discov. 6, 55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, M. et al. Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter. Nat. Commun. 14, 1361 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moubayidin, L., Di Mambro, R. & Sabatini, S. Cytokinin–auxin crosstalk. Trends Plant Sci. 14, 557–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Su, Y.-H., Liu, Y.-B. & Zhang, X.-S. Auxin–cytokinin interaction regulates meristem development. Mol. Plant 4, 616–625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandler, J. W. & Werr, W. Cytokinin–auxin crosstalk in cell type specification. Trends Plant Sci. 20, 291–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, W. et al. Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. Nat. Commun. 12, 5690 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koukaki, M. et al. The nucleobase-ascorbate transporter (NAT) signature motif in UapA defines the function of the purine translocation pathway. J. Mol. Biol. 350, 499–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Holzhuter, K. & Geertsma, E. R. Functional (un)cooperativity in elevator transport proteins. Biochem. Soc. Trans. 48, 1047–1055 (2020).

    Article  PubMed  Google Scholar 

  49. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

  54. Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A. & Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Farrow, S. C. & Emery, R. N. Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods 8, 42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  59. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–38 (1996).

    Article  Google Scholar 

  60. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2009).

    Article  Google Scholar 

  61. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Single-particle cryo-electron microscopy data were collected at the Center of Cryo-Electron Microscopy at Zhejiang University and the Cryo-Electron Microscopy Facility of Hubei University. We thank X. Zhang and S. Chang for support with facility access and data acquisition. This work was supported in part by the National Key Research and Development Program of China (2022YFA1303400 to S.J.Z. and S.Q., 2020YFA0908501 to J.G. and 2020YFA0908400 to S.W.), Zhejiang Provincial Natural Science Foundation (LR19C050002 to J.G.), the Distinguished Young Scholars of Hubei Province (2022CFA078 to S.W.) and Fundamental Research Funds for the Central Universities. J.G. was supported by MOE Frontier Science Center for Brain Science and Brain–Machine Integration, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

J.G., S.W., Yu Zhang and L.X. conceived and supervised the project. L.X., X.T. and Yan Zhang performed sample preparation, data acquisition and structure determination. L.X. and W.J. performed the functional assay. J.G., Yu Zhang, S.W., L.X., F.Y., S.J.Z., S.Q., N.S. and Z.J.D. performed structure data analysis. All authors participated in the manuscript preparation.

Corresponding authors

Correspondence to Lingyi Xu, Yu Zhang, Shan Wu or Jiangtao Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Veronica Maurino, Alexander Sobolevsky, Changlin Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sequence alignment of Arabidopsis thaliana AZG1/2 with AZG1 from other representative plants.

Sequences are aligned with ClustalW. Secondary structural elements of Arabidopsis thaliana AZG1 are indicated above the sequence alignment. Amino acid residues involved in cytokinin binding are indicated by triangles in blue. Sequences for the listed AZG1 homologs are available at NCBI with the following accession numbers. AtAZG1 (Arabidopsis thaliana): AEE74982, AtAZG2 (Arabidopsis thaliana): AED95923, NtAZG1 (Nicotiana tabacum): XP_016473942, OsAZG1 (Oryza sativa): XP_015637355, ZmAZG1 (Zea mays): NP_001146825, TaAZG1 (Triticum aestivum): XP_044448085, GmAZG1 (Glycine max): XP_003533668, SlAZG1 (Solanum lycopersicum): XP_004240877, HvAZG1 (Hordeum vulgare): XP_044955314.

Extended Data Fig. 2 LC-MS/MS analysis of AZG1.

a, AZG1 expression detected by whole-cell western blot using anti-Flag tag antibody. n = 3 independent experiments. b, Typical UHPLC-MS/MS chromatograms for the analysis of tZ. c, Typical UHPLC-MS/MS chromatograms for the analysis of tZ-d5. d, Typical UHPLC-MS/MS chromatograms for adenine standards and adenine extracted from WT and mutant AZG1 protein samples. e, Comparison of the peak area of adenine extracted from WT and mutant AZG1 protein samples. Data are mean ± s.d., n = 3 biologically independent samples. Statistical analysis was performed using two-tailed t-tests. P = 0.0000685 for D393F, P = 0.0001124 for T440Y, and P = 0.0000450 for D393W/T440W double mutant. Differences were considered statistically significant at P < 0.05.

Source data

Extended Data Fig. 3 Structure determination of AZG1apo/pH7.4, AZG1adenine/pH5.5, and AZG1T440Y/apo/pH7.4.

a, Size-exclusion chromatography of AZG1apo/pH7.4 on Superose 6 (GE Healthcare) and SDS-PAGE analysis of the final sample. n = 3 independent experiments. b, Representative cryo-EM micrograph and 2D classification images of AZG1apo/pH7.4. n = 3 independent experiments. c, Flowchart of image processing for AZG1apo/pH7.4. d, The density map of AZG1apo/pH7.4 colored by local resolution. e, Angular distribution plot of particles included in the final C2-symmetric 3D reconstruction of AZG1apo/pH7.4. f, The Gold standard Fourier Shell Correlation (FSC) curve of the final 3D reconstruction, and the FSC curve for cross-validation between the map and the model of AZG1apo/pH7.4. g-l, Equivalent panels to the ones described above, for the structure determination of AZG1adenine/pH5.5. For g and h, n = 3 independent experiments. m-r, Equivalent panels to the ones described above, for the structure determination of AZG1T440Y/apo/pH7.4. For m and n, n = 3 independent experiments.

Source data

Extended Data Fig. 4 Structure determination of AZG1tZ/pH7.4, AZG1tZ/pH5.5, AZG1BAP/pH7.4 and AZG1kinetin/pH7.4.

a, Representative cryo-EM micrograph and 2D classification images of AZG1tZ/pH7.4. n = 3 independent experiments. b, Flowchart of image processing for AZG1tZ/pH7.4. c, The density map of AZG1tZ/pH7.4 colored by local resolution. d, Angular distribution plot of particles included in the final C2-symmetric 3D reconstruction of AZG1tZ/pH7.4. e, The Gold standard Fourier Shell Correlation (FSC) curve of the final 3D reconstruction, and the FSC curve for cross-validation between the map and the model of AZG1tZ/pH7.4. f-j, Equivalent panels to the ones described above, for the structure determination of AZG1tZ/pH5.5. For f, n = 3 independent experiments. k-o, Equivalent panels to the ones described above, for the structure determination of AZG1BAP/pH7.4. For k, n = 3 independent experiments. p-t, Equivalent panels to the ones described above, for the structure determination of AZG1kinetin/pH7.4. For p, n = 3 independent experiments.

Extended Data Fig. 5 Sample maps of AZG1 structures.

a-g, Sample maps at 14 transmembrane helices (TMs) of (a) AZG1apo/pH7.4, (b) AZG1adenine/pH5.5, (c) AZG1T440Y/apo/pH7.4, (d) AZG1tZ/pH7.4, (e) AZG1tZ/pH5.5, (f) AZG1BAP/pH7.4, and (g) AZG1kinetin/pH7.4. The density is shown as a mask around each TM at the level of 0.02 in UCSF ChimeraX. h-n, Density around the substrate-binding site in (h) AZG1apo/pH7.4, (i) AZG1adenine/pH5.5, (j) AZG1T440Y/apo/pH7.4, (k) AZG1tZ/pH7.4, (l) AZG1tZ/pH5.5, (m) AZG1BAP/pH7.4, and (n) AZG1kinetin/pH7.4 at the contour level of around 6 σ in Coot. The dashed circle marks no density of substrate in the map of AZG1T440Y/apo/pH7.4.

Extended Data Fig. 6 Comparisons of AZG1 structures determined in different conditions.

a-f, Superimposition of AZG1tZ/pH7.4 with (a) AZG1apo/pH7.4, (b) AZG1adenine/pH5.5, (c) AZG1T440Y/apo/pH7.4, (d) AZG1tZ/pH5.5, (e) AZG1 BAP/pH7.4, and (f) AZG1kinetin/pH7.4 subunit A structures in side view and top view. g, Structures of TM1-7 (blue) and TM8-14 (wheat) of AZG1 shown together or individually in the same orientation. h, Structural superimposition of TM1-7 (blue) and TM8-14 (wheat) within AZG1 in different orientations.

Extended Data Fig. 7 Structure of AZG1.

a, Topology and domain arrangement of AZG1. b, Structure of one subunit of AZG1apo/pH7.4, with individual elements colored as in a, and zoomed-in side view (left) and top view (right) of ECD.

Extended Data Fig. 8 Structure comparison of AZG1tZ/pH7.4 and AZG1AF.

a, The intracellular-facing cavity shown in the cut-in side view in AZG1tZ/pH7.4 (left) and AZG1AF (right). b, The radii along the potential transport path for AZG1tZ/pH7.4 (pink) and AZG1AF (purple). c, Top 10 tZ molecules docked into AZG1AF. Side view of the superimposition of AZG1tZ/pH7.4 (pink) and AZG1AF (purple) when they are aligned at the transport domain. ECD, TM5, 6, and 12 are omitted for clarity. The zoomed-in view of the substrate binding site reveals that the binding configurations of tZ (purple) in AZG1AF are similar to that of tZ (blue) in the AZG1tZ/pH7.4 structure.

Extended Data Fig. 9 Structure comparison of AZG1tZ/pH7.4, UraA, and UapA.

a, Side view of the superimposition of AZG1tZ/pH7.4 (pink) and UraA (salmon) when they are aligned at the transport domain and the zoomed-in view of substrate binding site. b, Side view of the superimposition of AZG1tZ/pH7.4 (pink) and AZG2AF (blue) predicted by AlphaFold2 when they are aligned at the transport domain and the zoomed-in view of substrate binding site. Substrates and residues related to proton coordination are shown as sticks. Wat1 is shown as red spheres. Hydrogen bonds are represented by red dashed lines. c, Side view (left) and top view (right) of the superimposition of inward-facing AZG1tZ/pH7.4 (pink) and inward-facing UapA (transport domain in light green and scaffold domain in dark green) when they are aligned at the whole transporter. d, Side view of the superimposition of transport domain (left) and scaffold domain (right) of AZG1tZ/pH7.4 and UapA with the same alignment in c. e, Side view (left) and top view (right) of the superimposition of occluded UraA (salmon) and occluded AZG1AF (transport domain in light blue and scaffold domain in dark blue) when they are aligned at the whole transporter. f, Side view of the superimposition of transport domain (left) and scaffold domain (right) of UraA and AZG1AF with the same alignment in e. g, Side view (left) and top view (right) of the superimposition of occluded UraA and inward-facing UapA when they are aligned at the scaffold domain. Red-green arrows indicate the vertical translation and lateral rotation of the transport domain. The green dot indicates the C2 symmetry axis. h, Side view of the superimposition of the transport domain (left) and scaffold domain (right) of UraA and UapA when they are aligned at the transport domain and scaffold domain, respectively. i, Vertical translation of conserved residues (Tyr288 in UraA and Phe406 in UapA) from occluded UraA to inward-facing UapA. Substrate and conserved residues are shown as sticks. TM3 and TM10 are shown in orange. j, The substrate binding sites in AZG1tZ/pH7.4 (pink) and AZG1AF (purple) which are aligned at the transport domain. k, The substrate binding sites in UraA (salmon) and UapA (green) which are aligned at the transport domain. Substrates and residues related to substrate coordination are shown as sticks.

Extended Data Table 1 Data collection and refinement statistics

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Reporting Summary

Supplementary Video 1

Molecular dynamics simulations of dimeric AZG1tZ/7.4. The substrate tZ molecules dissociate from the two substrate binding pockets within 60 ns, thereby confirming an inward-facing conformation of the AZG1 structures.

Supplementary Video 2

The transport model of AZG1 based on the structural comparison of inward-facing AZG1tZ/7.4 and occluded AZG1AF predicted by AlphaFold2.

Source data

Source Data Figs. 1, 3 and 4, and Extended Data Fig. 2

Statistical source data for Figs. 1b, 3m and 4g, and Extended Data Fig. 2e. Unprocessed western blots and gels for Extended Data Figs. 2a and 3a,g,m.

Source Data Extended Data Figs. 2 and 3

Unprocessed western blots and gels for Extended Data Figs. 2a and 3a,g,m.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Jia, W., Tao, X. et al. Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1. Nat. Plants 10, 180–191 (2024). https://doi.org/10.1038/s41477-023-01590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01590-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing