Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis

Abstract

Subgenome dominance after whole-genome duplication generates distinction in gene number and expression at the level of chromosome sets, but it remains unclear how this process may be involved in evolutionary novelty. Here we generated a chromosome-scale genome assembly of the Asian pitcher plant Nepenthes gracilis to analyse how its novel traits (dioecy and carnivorous pitcher leaves) are linked to genomic evolution. We found a decaploid karyotype and a clear indication of subgenome dominance. A male-linked and pericentromerically located region on the putative sex chromosome was identified in a recessive subgenome and was found to harbour three transcription factors involved in flower and pollen development, including a likely neofunctionalized LEAFY duplicate. Transcriptomic and syntenic analyses of carnivory-related genes suggested that the paleopolyploidization events seeded genes that subsequently formed tandem clusters in recessive subgenomes with specific expression in the digestive zone of the pitcher, where specialized cells digest prey and absorb derived nutrients. A genome-scale analysis suggested that subgenome dominance likely contributed to evolutionary innovation by permitting recessive subgenomes to diversify functions of novel tissue-specific duplicates. Our results provide insight into how polyploidy can give rise to novel traits in divergent and successful high-ploidy lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of novel traits in Nepenthes.
Fig. 2: Subgenome dominance in the decaploid Nepenthes genome.
Fig. 3: The male-specific chromosomal region harbours transcriptional regulators of flower development.
Fig. 4: Tissue-specific gene expression in trapping pitcher leaves.
Fig. 5: Differential contributions of subgenomes to the evolution of novel genes.

Similar content being viewed by others

Data availability

Raw data and results are available at Dryad (https://doi.org/10.5061/dryad.xsj3tx9mj). The N. gracilis genome assembly and gene models are available from the DNA Data Bank of Japan (DDBJ) with the accession numbers BSYO01000001 to BSYO01000176. The N. gracilis genome assemblies are also available on CoGe (https://genomevolution.org/coge/) (genome ID: male assembly, 61566; female Hi-C assembly, 61892; female syntenic path assembly, 61931) and Dryad (https://doi.org/10.5061/dryad.xsj3tx9mj). DNA and mRNA sequencing reads were deposited to DDBJ (PRJDB15224, PRJDB15738, PRJDB15742 and PRJDB15737) and EBI (PRJEB20488), and the accession numbers are shown in Supplementary Tables 1 and 4. In this study, data were sourced from the following publicly accessible databases: DDBJ (https://www.ddbj.nig.ac.jp/index-e.html), JASPAR (https://jaspar.genereg.net/), NCBI (https://www.ncbi.nlm.nih.gov/), OrthoDB (https://www.orthodb.org/), Pfam (https://www.ebi.ac.uk/interpro/) and UniProt (https://www.uniprot.org/).

Code availability

Scripts used in this study are available at Dryad (https://doi.org/10.5061/dryad.xsj3tx9mj).

References

  1. Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 (2009).

    PubMed  Google Scholar 

  2. Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    PubMed  Google Scholar 

  3. Amborella Genome Project et al. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).

  4. Chanderbali, A. S. et al. Buxus and Tetracentron genomes help resolve eudicot genome history. Nat. Commun. 13, 643 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    PubMed  PubMed Central  Google Scholar 

  6. Edger, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29, 2150–2167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Z. et al. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387–410 (2021).

    CAS  PubMed  Google Scholar 

  8. Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).

    CAS  PubMed  Google Scholar 

  9. Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S. & Fleischmann, A. S. Conservation of carnivorous plants in the age of extinction. Glob. Ecol. Conserv. 24, e01272 (2020).

    Google Scholar 

  10. Ellison, A. M. & Adamec, L. R. (eds) Carnivorous Plants: Physiology, Ecology, and Evolution (Oxford Univ. Press, 2018).

  11. Renner, S. S. & Ricklefs, R. E. Dioecy and its correlates in the flowering plants. Am. J. Bot. 82, 596–606 (1995).

    Google Scholar 

  12. Walker, J. F. et al. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. Am. J. Bot. 104, 858–867 (2017).

    CAS  PubMed  Google Scholar 

  13. Yang, Y. et al. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 217, 855–870 (2018).

    CAS  PubMed  Google Scholar 

  14. Palfalvi, G. et al. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 30, 2312–2320.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Heubl, G. & Wistuba, A. A cytological study of the genus Nepenthes L. (Nepenthaceae). Sendtnera 4, 169–174 (1997).

    Google Scholar 

  16. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).

    Google Scholar 

  19. Albert, V. A., Williams, S. E. & Chase, M. W. Carnivorous plants: phylogeny and structural evolution. Science 257, 1491–1495 (1992).

    CAS  PubMed  Google Scholar 

  20. Heubl, G., Bringmann, G. & Meimberg, H. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales—revisited. Plant Biol. 8, 821–830 (2006).

    CAS  PubMed  Google Scholar 

  21. Freund, M. et al. The digestive systems of carnivorous plants. Plant Physiol. 190, 44–59 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barrett, S. C. H., Yakimowski, S. B., Field, D. L. & Pickup, M. Ecological genetics of sex ratios in plant populations. Philos. Trans. R. Soc. B 365, 2549–2557 (2010).

    Google Scholar 

  23. Scharmann, M., Grafe, T. U., Metali, F. & Widmer, A. Sex is determined by XY chromosomes across the radiation of dioecious Nepenthes pitcher plants. Evol. Lett. 3, 586–597 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    CAS  PubMed  Google Scholar 

  25. Scharmann, M., Wistuba, A. & Widmer, A. Introgression is widespread in the radiation of carnivorous Nepenthes pitcher plants. Mol. Phylogenet. Evol. 163, 107214 (2021).

    PubMed  Google Scholar 

  26. Joyce, B. L. et al. FractBias: a graphical tool for assessing fractionation bias following polyploidy. Bioinformatics 33, 552–554 (2017).

    CAS  PubMed  Google Scholar 

  27. Yu, Z., Zheng, C., Albert, V. A. & Sankoff, D. Excision dominates pseudogenization during fractionation after whole genome duplication and in gene loss after speciation in plants. Front. Genet. 11, 603056 (2020).

    PubMed  PubMed Central  Google Scholar 

  28. Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).

    CAS  PubMed  Google Scholar 

  29. Jia, K.-H. et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 235, 801–809 (2022).

    CAS  PubMed  Google Scholar 

  30. Wang, X. et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol. 209, 1252–1263 (2016).

    CAS  PubMed  Google Scholar 

  31. Ashman, T.-L. et al. Tree of sex: a database of sexual systems. Sci. Data 1, 140015 (2014).

    Google Scholar 

  32. Harkess, A. et al. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 32, 1790–1796 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    CAS  PubMed  Google Scholar 

  34. Li, J. et al. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization. New Phytol. 208, 137–148 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rifkin, J. L. et al. Widespread recombination suppression facilitates plant sex chromosome evolution. Mol. Biol. Evol. 38, 1018–1030 (2021).

    CAS  PubMed  Google Scholar 

  36. Potente, G. et al. Comparative genomics elucidates the origin of a supergene controlling floral heteromorphism. Mol. Biol. Evol. 39, msac035 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Akagi, T. et al. Recurrent neo-sex chromosome evolution in kiwifruit. Nat. Plants 9, 393–402 (2023).

    CAS  PubMed  Google Scholar 

  38. Horiuchi, A. et al. Ongoing rapid evolution of a post-Y region revealed by chromosome-scale genome assembly of a hexaploid monoecious persimmon (Diospyros kaki). Mol. Biol. Evol. 40, msad151 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yue, J. et al. The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr. Biol. 33, 2504–2514.e3 (2023).

    CAS  PubMed  Google Scholar 

  40. Westergaard, M. The mechanism of sex determination in dioecious flowering plants. in Advances in Genetics Vol. 9 (ed. Demerec, M.) 217–281 (Academic, 1958).

  41. Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).

    Google Scholar 

  42. Zhang, W. et al. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133, 3085–3095 (2006).

    CAS  PubMed  Google Scholar 

  43. Zhu, J. et al. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 55, 266–277 (2008).

    CAS  PubMed  Google Scholar 

  44. Murase, K. et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22, 115–123 (2017).

    CAS  PubMed  Google Scholar 

  45. Yang, X., Makaroff, C. A. & Ma, H. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell 15, 1281–1295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Subramanyam, K. & Narayana, L. L. A contribution to the floral anatomy of Nepenthes khasiana Hook F. Proc. Indian Acad. Sci. 73, 124–131 (1971).

    Google Scholar 

  47. Moyroud, E., Kusters, E., Monniaux, M., Koes, R. & Parcy, F. LEAFY blossoms. Trends Plant Sci. 15, 346–352 (2010).

    CAS  PubMed  Google Scholar 

  48. Moyroud, E., Tichtinsky, G. & Parcy, F. The LEAFY floral regulators in angiosperms: conserved proteins with diverse roles. J. Plant Biol. 52, 177–185 (2009).

    CAS  Google Scholar 

  49. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022).

    CAS  PubMed  Google Scholar 

  50. Liu, J. et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl Acad. Sci. USA 112, E5123–E5132 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Honma, T. & Goto, K. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127, 2021–2030 (2000).

    CAS  PubMed  Google Scholar 

  52. Theißen, G., Melzer, R. & Rümpler, F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259–3271 (2016).

    PubMed  Google Scholar 

  53. Sather, D. N., Jovanovic, M. & Golenberg, E. M. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biol. 10, 46 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Tsukaya, H. Comparative leaf development in angiosperms. Curr. Opin. Plant Biol. 17, 103–109 (2014).

    PubMed  Google Scholar 

  55. Renner, T. & Specht, C. D. A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. Int. J. Plant Sci. 172, 889–901 (2011).

    CAS  Google Scholar 

  56. Bemm, F. et al. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res. 26, 1–14 (2016).

    Google Scholar 

  57. Iosip, A. L. et al. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol. 18, e3000964 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Procko, C. et al. Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. eLife 10, e64250 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D. & Penin, A. A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070 (2016).

    CAS  PubMed  Google Scholar 

  60. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 2010–2011 (2010).

    Google Scholar 

  61. Pavlovič, A., Masarovičová, E. & Hudák, J. Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. Ann. Bot. 100, 527–536 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Pavlovič, A. Photosynthetic characterization of Australian pitcher plant Cephalotus follicularis. Photosynthetica 49, 253–258 (2011).

    Google Scholar 

  63. Yilamujiang, A., Reichelt, M. & Mithöfer, A. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants. Ann. Bot. 118, 369–375 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    CAS  PubMed  Google Scholar 

  65. Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 250–259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pavlovič, A. & Mithöfer, A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. J. Exp. Bot. 70, 3379–3389 (2019).

    PubMed  Google Scholar 

  67. Capó-Bauçà, S., Font-Carrascosa, M., Ribas-Carbó, M., Pavlovič, A. & Galmés, J. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. Ann. Bot. 126, 25–37 (2020).

    PubMed  PubMed Central  Google Scholar 

  68. Durand, D. & Hoberman, R. Diagnosing duplications—can it be done? Trends Genet. 22, 156–164 (2006).

    CAS  PubMed  Google Scholar 

  69. Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

    CAS  PubMed  Google Scholar 

  70. Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinform. 44, bbw008 (2016).

    Google Scholar 

  71. Callard, D., Axelos, M. & Mazzolini, L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 112, 705–715 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, K., Zawadzka, A., Czarnocki, Z., Reiter, R. J. & Back, K. Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J. Pineal Res. 61, 470–478 (2016).

    CAS  PubMed  Google Scholar 

  73. Choi, G.-H. & Back, K. Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression. Melatonin Res. 2, 120–138 (2019).

    Google Scholar 

  74. Lee, H. Y. & Back, K. The antioxidant cyclic 3-hydroxymelatonin promotes the growth and flowering of Arabidopsis thaliana. Antioxidants 11, 1157 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chia, T. F., Aung, H. H., Osipov, A. N., Goh, N. K. & Chia, L. S. Carnivorous pitcher plant uses free radicals in the digestion of prey. Redox Rep. 9, 255–261 (2004).

    PubMed  Google Scholar 

  76. Hatano, N. & Hamada, T. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J. Proteomics 75, 4844–4852 (2012).

    CAS  PubMed  Google Scholar 

  77. Fukushima, K. et al. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 1, 0059 (2017).

    Google Scholar 

  78. Wal, A., Staszek, P., Pakula, B., Paradowska, M. & Krasuska, U. ROS and RNS alterations in the digestive fluid of Nepenthes × ventrata trap at different developmental stages. Plants 11, 3304 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009).

    CAS  PubMed  Google Scholar 

  81. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

    CAS  PubMed  Google Scholar 

  82. Hedrich, R. & Fukushima, K. On the origin of carnivory: molecular physiology and evolution of plants on an animal diet. Annu. Rev. Plant Biol. 72, 133–153 (2021).

    CAS  PubMed  Google Scholar 

  83. Pannell, J. R. & Jordan, C. Y. Evolutionary transitions between hermaphroditism and dioecy in animals and plants. Annu. Rev. Ecol. Evol. Syst. 53, 183–201 (2022).

    Google Scholar 

  84. Cronk, Q. & Müller, N. A. Default sex and single gene sex determination in dioecious plants. Front. Plant Sci. 11, 1162 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Renner, S. S. & Müller, N. A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nat. Plants 7, 392–402 (2021).

    PubMed  Google Scholar 

  86. Albert, V. A., Oppenheimer, D. G. & Lindqvist, C. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 7, 297–301 (2002).

    CAS  PubMed  Google Scholar 

  87. Bringmann, G., Rischer, H., Schlauer, J. & Aké Assi, L. In vitro propagation of Ancistrocladus abbreviatus Airy Shaw (Ancistrocladaceae). Plant Cell Tissue Organ Cult. 57, 71–73 (1999).

    Google Scholar 

  88. Fukushima, K., Narukawa, H., Palfalvi, G. & Hasebe, M. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proc. R. Soc. B 288, 20202568 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. Bringmann, G., Rübenacker, M., Jansen, J. R., Scheutzow, D. & Aké Assi, L. On the structure of the Dioncophyllaceae alkaloids dioncophylline A (‘triphyophylline’) and ‘O-methyl-triphyophylline’. Tetrahedron Lett. 31, 639–642 (1990).

    CAS  Google Scholar 

  90. Bringmann, G. & Rischer, H. In vitro propagation of the alkaloid-producing rare African liana, Triphyophyllum peltatum (Dioncophyllaceae). Plant Cell Rep. 20, 591–595 (2001).

    CAS  Google Scholar 

  91. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS  Google Scholar 

  92. Michael, T. P. et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat. Commun. 9, 541 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E. & Lyons, E. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33, 2197–2198 (2017).

    CAS  PubMed  Google Scholar 

  95. Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 15, 3745–3776 (2020).

    PubMed  Google Scholar 

  96. Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10, 1 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).

    CAS  PubMed  Google Scholar 

  98. Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).

    PubMed  PubMed Central  Google Scholar 

  99. Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform. 19, 189 (2018).

    Google Scholar 

  100. Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    CAS  PubMed  Google Scholar 

  101. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  PubMed  Google Scholar 

  102. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  103. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    CAS  PubMed  Google Scholar 

  104. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    PubMed  PubMed Central  Google Scholar 

  105. Yang, Y., Li, Y., Chen, Q., Sun, Y. & Lu, Z. WGDdetector: a pipeline for detecting whole genome duplication events using the genome or transcriptome annotations. BMC Bioinform. 20, 75 (2019).

    Google Scholar 

  106. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  108. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).

    CAS  PubMed  Google Scholar 

  110. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, G.-Q. et al. The Apostasia genome and the evolution of orchids. Nature 549, 379–383 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Suetsugu, K. et al. Transcriptomic heterochrony and completely cleistogamous flower development in the mycoheterotrophic orchid Gastrodia. New Phytol. 237, 323–338 (2023).

    CAS  PubMed  Google Scholar 

  113. Fukushima, K. & Pollock, D. D. Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat. Commun. 11, 4459 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Huerta-Cepas, J. et al. The human phylome. Genome Biol. 8, 934–941 (2007).

    Google Scholar 

  115. Guéguen, L. & Duret, L. Unbiased estimate of synonymous and nonsynonymous substitution rates with nonstationary base composition. Mol. Biol. Evol. 35, 734–742 (2018).

    PubMed  Google Scholar 

  116. Fukushima, K. & Pollock, D. D. Detecting macroevolutionary genotype–phenotype associations using error-corrected rates of protein convergence. Nat. Ecol. Evol. 7, 155–170 (2023).

    PubMed  PubMed Central  Google Scholar 

  117. Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the following sources for funding: the Sofja Kovalevskaja programme of the Alexander von Humboldt Foundation (to K.F.), a Human Frontier Science Program Young Investigators grant RGY0082/2021 (to K.F. and T.R.), Deutsche Forschungsgemeinschaft research grants (454506241 to K.F., 415282803 to R.H. and 699/14-2 to G.B.), JSPS KAKENHI JP20H05909 (to K.S.), United States National Science Foundation grants (1442190 to V.A.A. and 2030871 to T.R. and V.A.A.), United States Department of Agriculture-National Institutes of Food and Agriculture grant 2019-67012-37587 (to K.J.G.) and research-leave funding from the School of Biological Sciences, Nanyang Technological University, to V.A.A. and C.L. that supported N. gracilis collecting and sequencing. M. Niissalo, J. H. Ang, Q. Y. Tan and G. Khew (Singapore Botanic Gardens, National Parks Board, Singapore) are thanked for their assistance with collecting and processing the N. gracilis material for long-read DNA sequencing. We thank J. Danz, H. Doi and L. Steffen for providing additional plant materials of Nepenthes, T. Winkelmann for propagating in vitro cultures of T. peltatum and J. Rothenhöfer for plant cultivation. Computations were partially performed on the National Institute of Genetics supercomputer, the Data Integration and Analysis Facility at the National Institute for Basic Biology, the Erlangen National High Performance Computing Center, the University at Buffalo Center for Computational Research and the High-Performance Computing Clusters at the University of Würzburg.

Author information

Authors and Affiliations

Authors

Contributions

V.A.A. and K.F. conceptualized the project. F.S., G.V., G.B., Y.W.L., C.L., V.A.A. and K.F. acquired materials. Y.W.L., C.L., T.P.M., S.M. and K.S. conducted and/or oversaw DNA extraction and sequencing. F.S., E.C., T.P.M., V.A.A. and K.F. conducted genome assembly. F.S., L.C., M.F., T.W. and K.F. conducted RNA extraction. S.R. conducted gene model prediction. F.S., A.M., M.R., M.S., V.A.A. and K.F. analysed the results. F.S., M.S., V.A.A. and K.F. wrote the manuscript with input from all authors. K.J.G. and T.R. contributed to improving the manuscript. D.B., R.H., V.A.A. and K.F. supervised the project and coordinated collaborations. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Victor A. Albert or Kenji Fukushima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Takashi Akagi, Andrej Pavlovic and Feng Cheng for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Texts 1–7, Figs. 1–29 and references.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–16.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saul, F., Scharmann, M., Wakatake, T. et al. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. Nat. Plants 9, 2000–2015 (2023). https://doi.org/10.1038/s41477-023-01562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01562-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing