Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SCEP1 and SCEP2 are two new components of the synaptonemal complex central element

Abstract

The synaptonemal complex (SC) is a proteinaceous structure that forms between homologous chromosomes during meiosis prophase. The SC is widely conserved across species, but its structure and roles during meiotic recombination are still debated. While the SC central region is made up of transverse filaments and central element proteins in mammals and fungi, few central element proteins have been identified in other species. Here we report the identification of two coiled-coil proteins, SCEP1 and SCEP2, that form a complex and localize at the centre of the Arabidopsis thaliana SC. In scep1 and scep2 mutants, chromosomes are aligned but not synapsed (the ZYP1 transverse filament protein is not loaded), crossovers are increased compared with the wild type, interference is lost and heterochiasmy is strongly reduced. We thus report the identification of two plant SC central elements, and homologues of these are found in all major angiosperm clades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and characterization of SCEP1 and SCEP2.
Fig. 2: ZYP1 is not loaded in scep1 and scep2 mutants.
Fig. 3: SCEP1 and SCEP2 are loaded on the SC central region.
Fig. 4: SCEP1 and SCEP2 colocalize at the centre of the SC.
Fig. 5: The three proteins SCEP1, SCEP2 and ZYP1 are needed to assemble the SC central region.
Fig. 6: SCEP1 and SCEP2 form a complex.
Fig. 7: MLH1 foci and COs are increased in CE mutants.
Fig. 8: SCEP1, SCEP2 and ZYP1 homologues can be found in all major angiosperm species.

Similar content being viewed by others

Data availability

The raw read data for Fig. 7 can be found in the EBI ArrayExpress database under accession number E-MTAB-12985 (https://www.ebi.ac.uk/biostudies/studies/E-MTAB-12985).

Code availability

The in-house R (4.2.2) scripts used in this work are available at https://github.com/mapeuch/SCEP1_SCEP2_paper.

References

  1. Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Schmekel, K. et al. Organization of SCP1 protein molecules within synaptonemal complexes of the rat. Exp. Cell. Res. 226, 20–30 (1996).

    CAS  PubMed  Google Scholar 

  3. Higgins, J. D., Sanchez-Moran, E., Armstrong, S. J., Jones, G. H. & Franklin, F. C. H. The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19, 2488–2500 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Capilla-Pérez, L. et al. The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2023613118 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. France, M. G. et al. ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2021671118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sym, M., Engebrecht, J. A. & Roeder, G. S. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378 (1993).

    CAS  PubMed  Google Scholar 

  7. Vries, F. A. T. D. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. MacQueen, A. J., Colaiacovo, M. P., McDonald, K. & Villeneuve, A. M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hurlock, M. E. et al. Identification of novel synaptonemal complex components in C. elegans. J. Cell Biol. 219, e201910043 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z. et al. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol. 219, e201910086 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Page, S. L. & Hawley, R. S. c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev. 15, 3130–3143 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong, H. & Roeder, G. S. Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J. Cell Biol. 148, 417–426 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Costa, Y. et al. Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J. Cell Sci. 118, 2755–2762 (2005).

    CAS  PubMed  Google Scholar 

  14. Schramm, S. et al. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet. 7, e1002088 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamer, G. et al. Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. J. Cell Sci. 119, 4025–4032 (2006).

    CAS  PubMed  Google Scholar 

  16. Gómez-H, L. et al. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat. Commun. 7, 13298 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Colaiacovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5, 463–474 (2003).

    CAS  PubMed  Google Scholar 

  18. Smolikov, S., Schild-Prufert, K. & Colaiacovo, M. P. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis. PLoS Genet. 5, e1000669 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Smolikov, S. et al. SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis elegans. Genetics 176, 2015–2025 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphryes, N. et al. The Ecm11–Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet. 9, e1003194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Page, S. L. et al. Corona is required for higher-order assembly of transverse filaments into full-length synaptonemal complex in Drosophila oocytes. PLoS Genet. 4, e1000194 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Collins, K. A. et al. Corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila. Genetics 198, 219–228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ur, S. N. & Corbett, K. D. Architecture and dynamics of meiotic chromosomes. Annu. Rev. Genet. 55, 497–526 (2021).

    CAS  PubMed  Google Scholar 

  24. Zhang, F. G., Zhang, R. R. & Gao, J. M. The organization, regulation, and biological functions of the synaptonemal complex. Asian J. Androl. 23, 580–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Crichton, J. H. et al. Structural maturation of SYCP1-mediated meiotic chromosome synapsis by SYCE3. Nat. Struct. Mol. Biol. 30, 188–199 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pyatnitskaya, A., Andreani, J., Guérois, R., De Muyt, A. & Borde, V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev. 36, 53–69 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dunce, J. M., Salmon, L. J. & Davies, O. R. Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2–TEX12. Nat. Struct. Mol. Biol. 28, 681–693 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schild-Prüfert, K. et al. Organization of the synaptonemal complex during meiosis in Caenorhabditis elegans. Genetics 189, 411–421 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Cahoon, C. K. et al. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc. Natl Acad. Sci. USA 114, E6857–E6866 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D. & Penin, A. A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070 (2016).

    CAS  PubMed  Google Scholar 

  31. Hurel, A. et al. A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. Plant J. 95, 385–396 (2018).

    CAS  PubMed  Google Scholar 

  32. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lambing, C. et al. Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers. PLoS Genet. 11, e1005372 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Lian, Q. et al. The megabase-scale crossover landscape is largely independent of sequence divergence. Nat. Commun. 13, 3828 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Muller, H. J. The mechanisms of crossing-over. Am. Nat. 582, 193–434 (1916).

    Google Scholar 

  37. Zickler, D. & Kleckner, N. A few of our favorite things: pairing, the bouquet, crossover interference and evolution of meiosis. Semin. Cell Dev. Biol. 54, 135–148 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Thangavel, G., Hofstatter, P. G., Mercier, R. & Marques, A. Tracing the evolution of the plant meiotic molecular machinery. Plant Reprod. 36, 73–95 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dunne, O. M. & Davies, O. R. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J. Biol. Chem. 294, 9260–9275 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Bolcun-Filas, E. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell Biol. 176, 741–747 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamer, G. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J. Cell Sci. 121, 2445–2451 (2008).

    CAS  PubMed  Google Scholar 

  42. Bolcun-Filas, E. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet. 5, e1000393 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Rog, O., Köhler, S. & Dernburg, A. F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6, e21455 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Leung, W.-K. et al. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J. Cell Biol. 211, 785–793 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhagwat, N. R. et al. SUMO is a pervasive regulator of meiosis. eLife 10, e57720 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rao, H. B. D. P. et al. A SUMO–ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355, 403–407 (2017).

    PubMed  Google Scholar 

  47. Borner, G. V. et al. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    PubMed  Google Scholar 

  48. Smolikov, S. et al. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis. Genetics 176, 2027–2033 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Espagne, E. et al. Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis. Proc. Natl Acad. Sci. USA 108, 10614–10619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, K., Wang, C., Liu, Q., Liu, W. & Fu, Y. Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice. Mol. Plant 8, 1295–1298 (2015).

    CAS  PubMed  Google Scholar 

  51. Durand, S. et al. Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage. Nat. Commun. 13, 5999 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morgan, C. et al. Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis. Nat. Commun. 12, 4674 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fozard, J. A., Morgan, C. & Howard, M. Coarsening dynamics can explain meiotic crossover patterning in both the presence and absence of the synaptonemal complex. eLife 12, e79408 (2023).

    PubMed  PubMed Central  Google Scholar 

  54. Zhang, L., Köhler, S., Rillo-Bohn, R. & Dernburg, A. F. A compartmentalized signaling network mediates crossover control in meiosis. eLife 7, e30789 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Zhang, L., Stauffer, W., Zwicker, D. & Dernburg, A. F. Crossover patterning through kinase-regulated condensation and coarsening of recombination nodules. Preprint at bioRxiv https://doi.org/10.1101/2021.08.26.457865 (2021).

  56. Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fauser, F., Schiml, S. & Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348–359 (2014).

    CAS  PubMed  Google Scholar 

  58. Morineau, C. et al. Selective gene dosage by CRISPR–Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol. J. 15, 729–739 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bechtold, N. & Pelletier, G. in Arabidopsis Protocols (eds Martinez-Zapater, J. M. & Salinas, J.) 259–266 (Humana, 1998).

  60. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Google Scholar 

  61. Chelysheva, L. A. et al. An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet. Genome Res. 129, 143–153 (2010).

    CAS  PubMed  Google Scholar 

  62. Ross, K. J., Fransz, P. & Jones, G. H. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res. 4, 507–516 (1996).

    CAS  PubMed  Google Scholar 

  63. Vrielynck, N. et al. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939–943 (2016).

    CAS  PubMed  Google Scholar 

  64. Cromer, L. et al. Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis. Curr. Biol. 23, 2090–2099 (2013).

    CAS  PubMed  Google Scholar 

  65. Lian, Q., Chen, Y., Chang, F., Fu, Y. & Qi, J. inGAP-family: accurate detection of meiotic recombination loci and causal mutations by filtering out artificial variants due to genome complexities. Genomics Proteomics Bioinformatics 20, 524–535 (2022).

    PubMed  Google Scholar 

  66. Wang, H. et al. The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PLoS Genet. 16, e1008849 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fernandes, J. B. et al. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. PLoS Genet. 14, e1007317 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Lu, Y., Ran, J.-H., Guo, D.-M., Yang, Z.-Y. & Wang, X.-Q. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS ONE 9, e107679 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Bowman, J. L. The liverwort Marchantia polymorpha, a model for all ages. Curr. Top. Dev. Biol. 147, 1–32 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Iguertsira and Z. Klising for technical help with plasmid construct and fertility characterization, and D. Charif for bioinformatic guidance in the analysis of transcriptomic data. This work has benefited from the support of the Institut Jean-Pierre Bourgin’s Plant Observatory technological platforms. This research was funded by ANR (COPATT ANR-20-CE12-0006), by core funding from the Max Planck Society and an Alexander von Humboldt Fellowship to Q.L. The Institut Jean-Pierre Bourgin benefits from the support of Saclay Plant Sciences (ANR-17-EUR-0007).

Author information

Authors and Affiliations

Authors

Contributions

N.V. produced all the genetic material, analysed the fertility data, produced and analysed the scep1−/− plants, produced the SCPE1 and SCEP2 proteins to obtain antibodies, and produced and analysed the immunocytology data at standard resolution. M.P. analysed the localization and distances between SC components, analysed the AlphaFold2 data and produced and analysed the SCEP1 and SCEP2 orthologue data. S.D. produced and analysed the STED immunocytology data. Q.L. analysed the sequencing data and performed the recombination, interference and aneuploidy analyses. A.C., A.H. and J.G. produced the MLH1 and HEI10 immunocytology data. R.G. produced the analysis of the SCEP1–SCEP2 complex with AlphaFold2. M.G. and R.M. contributed to the supervision and analysis of the cytological and genetic data. C.M. led the project, produced the bioinformatic analysis of the transcriptomic data and wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Mathilde Grelon or Christine Mézard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ian Henderson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Description of SCEP1 and SCEP2 protein sequences in the wt and mutants.

a. SCEP1 (AT1G33500). The exon intron structure of the gene is obtained from the TAIR. The positions of the 3 gRNAs used for CRISPR-Cas9 are shown in green above the gene structure. The positions of the primers used to sequence the 3′ part of the cDNA are shown in black. b. DNA sequence of the 7 mutations obtained by CRISPR-Cas9. The sequence of each guide is presented and the PAM is underlined. scep1-1 in the Columbia background and scep1-7 in the Landsberg background are identical with an insertion of a C that creates a BamH1 restriction site (italicize). c. Protein sequence expected from the mutants obtained by CRISPR-Cas9. Amino acids in red are identical to the wt protein sequence, amino acids in grey differ from the wt due to the frame shift created by the mutations in the open reading frame. * marks the position of the STOP codon. d. SCEP2 (AT3G28370). The exon intron structure of the gene is obtained from the TAIR. The positions of the T-DNA insertions are presented below the gene structure with magenta arrows. Among the 4 T-DNA insertions, only the line N663933 (scep2-1) exhibits a meiotic phenotype. The positions of the two couple of primers used to sequence the 3′ part of the cDNA are drawn above the gene structure. e. The theoretical DNA sequence of the 3′ part of the genomic DNA between the nucleotides 10619881 and 10610599 obtained from the TAIR is written in black with exons in upper case letters. After PCR amplification and sequencing of the cDNA with either the F1-R7 or F4-R8 primers, two cDNA sequences (a short one with the primers F1-R7 and a long one with the primers F4-R8) were obtained producing two isoforms of SCEP2. f. The SCEP2 protein sequence with the two isoforms that differ in their 3′ sequence. The position of the N663933 insertion is highlighted in yellow in the coding sequence. The last 5 amino acids removed by the N525173 and N508352 insertions are highlighted in green.

Extended Data Fig. 2 Test of the specificity of the SCEP1 and SCEP2 antibodies.

a. Double immunolocalization ASY1 (Magenta) and SCEP1 (Green) in scep1-1 male meiocytes. b. Double immunolocalization ASY1 (Magenta) and SCEP2 (Green) in scep2-1 male meiocytes.

Extended Data Fig. 3 The distribution of COs along the five chromosomes.

The distribution of COs along chromosomes in female (A) and male (B) wild type, zyp1 and scep1-1. The centromere and pericentromeric regions are indicated by gray and blue shading, respectively. Analysis is done with 1-Mb windows and 50-kb sliding steps. For pericentromeric regions and each non-overlapping 1-Mb window along chromosome arms, two-sided Pearson′s Chi-squared test was used to examine the difference between wild type and scep1-1, zyp1 and scep1-1 in female and male populations separately. Windows with p-value (corrected with the FDR method) < 0.05 were marked by stars.

Extended Data Fig. 4 AlphaFold2 prediction of the complex formed by SCEP1 and SCEP2 orthologs in Selaginella moellendorffii, Amborella, Jatropha curcas, Solanum lycopersicum and Gossypium raimondii.

For each species, the top complex represents the SCEP1 homolog in pink and the SCEP2 homolog in blue. The bottom complex is colored by per-residue pLDDT. High pLDDT values indicate strong confidence in the predicted structure, and low values indicate low confidence. Predicted Aligned Error values of the SCEP1-SCEP2 dimer. Low PAE values indicate strong confidence in the relative position of the two amino acids, and high values indicate low confidence.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Data 1

Supplementary Tables 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrielynck, N., Peuch, M., Durand, S. et al. SCEP1 and SCEP2 are two new components of the synaptonemal complex central element. Nat. Plants 9, 2016–2030 (2023). https://doi.org/10.1038/s41477-023-01558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01558-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing