Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

COG-imposed Golgi functional integrity determines the onset of dark-induced senescence

Abstract

Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cog7 mutant displays constitutively induced RSRE and accelerated dark-induced senescence.
Fig. 2: The cog7 mutant display accelerated dark-induced ubiquitination and autophagy.
Fig. 3: Sucrose reverts the dark-induced accelerated senescence phenotypes of the cog7 mutant.
Fig. 4: Dark-induced senescence is accompanied by enhanced protein N-glycosylation.
Fig. 5: COG subunits differently compensate the cog7 phenotypes.
Fig. 6: Simplified schematic model of the link between Golgi’s functional integrity and reconfiguration of hypometabolic response network.

Similar content being viewed by others

Data availability

All processed data are contained either in the manuscript, Extended Data or Supplementary Information. RNA sequencing reads were aligned to the TAIR10 genome and counts were assigned to genes in the Araport11 annotation. Global transcriptome data are available via NCBI-BioProject (SubmissionID: SUB12956374, BioProject ID:PRJNA945907). Peptide raw data are available via ProteomeXchange with identifier PXD040920. Agreement number is CE258GM6H1. Source data underlying Figs. 1b, 2f,h, 3b,c, 4c and 5g–i, and Extended Data Figs. 1f and 4 are provided with this paper.

References

  1. Vukasinovic, N. & Zarsky, V. Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol. 4, 46 (2016).

    PubMed Central  PubMed  Google Scholar 

  2. Smith, R. D. & Lupashin, V. V. Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr. Res. 343, 2024–2031 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Fotso, P., Koryakina, Y., Pavliv, O., Tsiomenko, A. B. & Lupashin, V. V. Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem. 280, 27613–27623 (2005).

    CAS  PubMed  Google Scholar 

  4. Bailey Blackburn, J., Pokrovskaya, I., Fisher, P., Ungar, D. & Lupashin, V. V. COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits. Front. Cell Dev. Biol. 4, 23 (2016).

    PubMed Central  PubMed  Google Scholar 

  5. Blackburn, J. B., D’Souza, Z. & Lupashin, V. V. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett. 593, 2466–2487 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Farkas, R. M., Giansanti, M. G., Gatti, M. & Fuller, M. T. The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol. Biol. Cell 14, 190–200 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Pokrovskaya, I. D. et al. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554–1569 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Shestakova, A., Zolov, S. & Lupashin, V. COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204 (2006).

    CAS  PubMed  Google Scholar 

  9. Cottam, N. P. & Ungar, D. Retrograde vesicle transport in the Golgi. Protoplasma 249, 943–955 (2012).

    CAS  PubMed  Google Scholar 

  10. Tan, X. et al. Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth. PLoS Genet. 12, e1006140 (2016).

    PubMed Central  PubMed  Google Scholar 

  11. Willett, R. et al. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci. Rep. 6, 29139 (2016).

    PubMed Central  PubMed  Google Scholar 

  12. Oka, T. et al. Genetic analysis of the subunit organization and function of the conserved oligomeric Golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J. Biol. Chem. 280, 32736–32745 (2005).

    CAS  PubMed  Google Scholar 

  13. Ishikawa, T. et al. EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13, 521–535 (2008).

    CAS  PubMed  Google Scholar 

  14. Whyte, J. R. C. & Munro, S. The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    CAS  PubMed  Google Scholar 

  15. Buchanan-Wollaston, V. et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42, 567–585 (2005).

    CAS  PubMed  Google Scholar 

  16. Kim, J., Kim, J. H., Lyu, J. I., Woo, H. R. & Lim, P. O. New insights into the regulation of leaf senescence in Arabidopsis. J. Exp. Bot. 69, 787–799 (2018).

    CAS  PubMed  Google Scholar 

  17. Law, S. R. et al. Darkened leaves use different metabolic strategies for senescence and survival. Plant Physiol. 177, 132–150 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Song, Y. et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol. Plant 7, 1776–1787 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang, Y., Liu, Z., Chen, Y., He, J. X. & Bi, Y. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Sci. 237, 57–68 (2015).

    CAS  PubMed  Google Scholar 

  20. Grbic, V. & Bleecker, A. B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 8, 595–602 (1995).

    CAS  Google Scholar 

  21. He, Y., Fukushige, H., Hildebrand, D. F. & Gan, S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876–884 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Walley, J. W. & Dehesh, K. Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. J. Integr. Plant Biol. 52, 354–359 (2010).

    CAS  PubMed  Google Scholar 

  23. Benn, G. et al. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3. Proc. Natl Acad. Sci. USA 113, 8855–8860 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Benn, G. et al. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. 80, 82–92 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Walley, J. W. et al. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet. 3, 1800–1812 (2007).

    CAS  PubMed  Google Scholar 

  26. Bjornson, M. et al. Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. Plant Physiol. 166, 988–996 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gil, M. J., Coego, A., Mauch-Mani, B., Jordá, L. & Vera, P. The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant J. 44, 155–166 (2005).

    CAS  PubMed  Google Scholar 

  28. Jung, H. S. & Chory, J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway. Plant Physiol. 152, 453–459 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Fujiki, Y. et al. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant. 111, 345–352 (2001).

    CAS  PubMed  Google Scholar 

  30. Book, A. J. et al. Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J. Biol. Chem. 285, 25554–25569 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Kurepa, J. & Smalle, J. A. Structure, function and regulation of plant proteasomes. Biochimie 90, 324–335 (2008).

    CAS  PubMed  Google Scholar 

  32. Grumati, P. & Dikic, I. Ubiquitin signaling and autophagy. J. Biol. Chem. 293, 5404–5413 (2018).

    CAS  PubMed  Google Scholar 

  33. Marshall, R. S. & Vierstra, R. D. Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol. 69, 173–208 (2018).

    CAS  PubMed  Google Scholar 

  34. Abdollahzadeh, I., Schwarten, M., Gensch, T., Willbold, D. & Weiergraber, O. H. The Atg8 family of proteins—modulating shape and functionality of autophagic membranes. Front. Genet. 8, 109 (2017).

    PubMed Central  PubMed  Google Scholar 

  35. Thompson, A. R., Doelling, J. H., Suttangkakul, A. & Vierstra, R. D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097–2110 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Liu, Y. & Bassham, D. C. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 63, 215–237 (2012).

    CAS  PubMed  Google Scholar 

  37. Luo, M. & Zhuang, X. Analysis of autophagic activity using ATG8 lipidation assay in Arabidopsis thaliana. Bio. Protoc. 8, e2880 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang, H. & Schippers, J. H. M. The role and regulation of autophagy and the proteasome during aging and senescence in plants. Genes (Basel) 10, 267 (2019).

    CAS  PubMed  Google Scholar 

  40. Woo, H. R., Kim, H. J., Nam, H. G. & Lim, P. O. Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J. Cell Sci. 126, 4823–4833 (2013).

    CAS  PubMed  Google Scholar 

  41. Wada, S. et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 149, 885–893 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Moriyasu, Y. & Ohsumi, Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111, 1233–1241 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kondou, Y., Higuchi, M., Ichikawa, T. & Matsui, M. Application of full-length cDNA resources to gain-of-function technology for characterization of plant gene function. Methods Mol. Biol. 729, 183–197 (2011).

    CAS  PubMed  Google Scholar 

  44. Sun, Y. et al. Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol. Biol. Cell 18, 4129–4142 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sohda, M. et al. The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8, 270–284 (2007).

    CAS  PubMed  Google Scholar 

  46. Foulquier, F. COG defects, birth and rise. Biochim. Biophys. Acta 1792, 896–902 (2009).

    CAS  PubMed  Google Scholar 

  47. Climer, L. K., Dobretsov, M. & Lupashin, V. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front. Neurosci. 9, 405 (2015).

    PubMed Central  PubMed  Google Scholar 

  48. Blackburn, J. B., Kudlyk, T., Pokrovskaya, I. & Lupashin, V. V. More than just sugars: conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 19, 463–480 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Dwek, R. A. Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996).

    CAS  PubMed  Google Scholar 

  50. Zeng, W., Ford, K. L., Bacic, A. & Heazlewood, J. L. N-linked glycan micro-heterogeneity in glycoproteins of Arabidopsis. Mol. Cell Proteomics 17, 413–421 (2018).

    CAS  PubMed  Google Scholar 

  51. Henry, I. M. et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26, 1382–1397 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zeng, L. & Dehesh, K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 22, 137 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2012).

    CAS  PubMed  Google Scholar 

  55. Verzani, J. A peer-reviewed, open-access publication of the R Foundation for Statistical Computing. R J. 10, 4 (2018).

    Google Scholar 

  56. Dillies, M. A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14, 671–683 (2013).

    CAS  PubMed  Google Scholar 

  57. Wickham, H. ggplot2. Elegant Graphics for Data Analysis (Springer, 2009).

  58. Gu, Z. G., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    CAS  PubMed  Google Scholar 

  59. Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    CAS  PubMed  Google Scholar 

  60. Gower, J. C. & Mardia, K. V. Multivariate-analysis and its applications – a report on the Hull conference, 1973. R. Stat. Soc. C: Appl. Stat. 23, 60–66 (1974).

    Google Scholar 

  61. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

  62. Foster, C. E., Martin, T. M. & Pauly, M. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin. J. Vis. Exp. 37, 1745 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by J. W. Leibacher and K. Cookson endowed chair funds, and by grants from the National Institutes of Health (grant no. R01GM107311-8) and the National Science Foundation (grant no. 2104365) to K.D.

Author information

Authors and Affiliations

Authors

Contributions

K.D. conceived and designed the experiments and wrote the manuscript. H.-S.C. and M.B. performed experiments and analysed the data. J.L., J.W., H.K., A.D.S., K.S.K. and J.C.M. performed the experiments. M.H. analysed the data.

Corresponding author

Correspondence to Katayoon Dehesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Antje von Schaewen, Olga Zabotina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 High susceptibility of cog7 plants to reduced light intensity.

(a-b) Bacterial growth in mature leaves of 3-4 weeks old WT, cog7, and cog7/COG7 plants at 0 and 3 days post-inoculation (dpi) with (a) Pseudomonas syringae (P. Syringea) DC3000 (n = 14, 30, 15, 30, 15, and 30 independent experiments, respectively), and (b) P. Syringea HrcC (n = 18, 26, 20, 29, 19, and 29 independent experiments, respectively). (c) Disease symptoms in mature leaves of 3-4 weeks old WT, cog7, and cog7/COG7 plants at 0 and 4 dpi with Botrytis cinerea. (d) Fresh weight of 2-week-old WT, cog7, and cog7/COG7 seedlings grown on a medium containing 0 mM or 100 mM NaCl (n = 18 biological replicates for each condition). (e) Representative images and the respective (f) seedling size of 2-week-old WT and cog7 grown under three different white light intensities (20, 60, and 100 μmol/m2/s). There were two independent experiments with varying number of biological replicates (n = 10, 11, 11, 14, 19, and 15 biological replicates for each condition respectively). The means were compared using a two-tailed Student t-test *P = 0.02673 or **P = 0.00389. In a-b, d, and f, the lower and upper bounds of the box plot represent the 25th and 75th percentile respectively; the midline bar represents the median. The lower and upper ends of the whiskers represent minimum and maximum values respectively.

Source data

Extended Data Fig. 2 Quantification of ATG8/ATG8-PE abundance.

(a-b) The densitograms of ATG8-PE relative to the respective Ponceau S-stained band from (a) Fig. 2h, and (b) Fig. 3c.

Extended Data Fig. 3 Abundance of glycosyltransferase proteins.

MaxQuant-based quantification of protein abundance of glycosyltransferases of not treated and dark-treated WT and cog7 seedlings using the respective proteomic data.

Extended Data Fig. 4 DEX-induced reduced transcript levels COG5 and 7.

Transcript level of COG5 and COG7 in 2-week old seedlings of three genotypes (WT, COG5i and COG7i) grown in 16-hour light/8-hour dark at 4 days post water (Mock) or dexamethasone (DEX) induction. Error bars represent the SEM of three biological replicates, and the centers of the error bars represent the mean values. Two-tailed Student’s t-tests confirms significant differences of COG5 or COG7 expressions between Mock and DEX induction (*P = 0.00395 for COG5i or 0.00298 for COG7i).

Source data

Extended Data Fig. 5 Quantification of ATG8/ATG8-PE abundance.

The densitograms of ATG8-PE relative to the respective Ponceau S-stained band from Fig. 5h.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Unprocessed Ponceau stained membrane.

Source Data Fig. 3

Unprocessed Ponceau stained membrane.

Source Data Fig. 4

Unprocessed Ponceau stained membrane.

Source Data Fig. 5

Unprocessed Ponceau stained membrane.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HS., Bjornson, M., Liang, J. et al. COG-imposed Golgi functional integrity determines the onset of dark-induced senescence. Nat. Plants 9, 1890–1901 (2023). https://doi.org/10.1038/s41477-023-01545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01545-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing