Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Widespread synchronous decline of Mediterranean-type forest driven by accelerated aridity

Abstract

Large-scale, abrupt ecosystem change in direct response to climate extremes is a critical but poorly documented phenomenon1. Yet, recent increases in climate-induced tree mortality raise concern that some forest ecosystems are on the brink of collapse across wide environmental gradients2,3. Here we assessed climatic and productivity trends across the world’s five Mediterranean forest ecosystems from 2000 to 2021 and detected a large-scale, abrupt forest browning and productivity decline in Chile (>90% of the forest in <100 days), responding to a sustained, acute drought. The extreme dry and warm conditions in Chile, unprecedented in the recent history of all Mediterranean-type ecosystems, are akin to those projected to arise in the second half of the century4. Long-term recovery of this forest is uncertain given an ongoing decline in regional water balance. This dramatic plummet of forest productivity may be a spyglass to the future for other Mediterranean ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual regional mean NDVI time series and anomaly for all MTEs.
Fig. 2: MTEs' precipitation and temperature anomalies.
Fig. 3: Examples showing the magnitude of decline in evergreen sclerophyllous forests in Central Chile.

Similar content being viewed by others

Data availability

All data are available in the article. Source data are provided with this paper.

Code availability

The codes generated during the current study are available from the corresponding author on reasonable request.

References

  1. Godfree, R. C. et al. Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during pancontinental megadrought. Proc. Natl Acad. Sci. USA 116, 15580–15589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

    Article  Google Scholar 

  3. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Article  Google Scholar 

  4. Bozkurt, D., Rojas, M., Boisier, J. P. & Valdivieso, J. Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Climatic Change 150, 131–147 (2018).

    Article  Google Scholar 

  5. Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).

    Article  CAS  Google Scholar 

  6. Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018).

    Article  Google Scholar 

  7. Newton, A. C. et al. Operationalising the concept of ecosystem collapse for conservation practice. Biol. Conserv. 264, 109366 (2021).

    Article  Google Scholar 

  8. Newton, A. C. Ecosystem Collapse and Recovery (Cambridge Univ. Press, 2021).

  9. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Rundel, P. W. et al. Mediterranean biomes: evolution of their vegetation, floras, and climate. Annu. Rev. Ecol. Evol. Syst. 47, 383–407 (2016).

    Article  Google Scholar 

  11. Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).

    Article  Google Scholar 

  12. Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).

    Article  PubMed  Google Scholar 

  13. Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Das, A. J. et al. Empirically validated drought-vulnerability mapping in the mixed conifer forests of the Sierra Nevada. Ecol. Appl. 32, e2514 (2022).

    Article  PubMed  Google Scholar 

  15. Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    Article  PubMed  Google Scholar 

  16. Garreaud, R. D. et al. The Central Chile mega drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40, 421–439 (2019).

    Article  Google Scholar 

  17. Chen, D. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al) 147–286 (Cambridge Univ. Press, 2021).

  18. Garreaud, R. D., Clem, K. & Veloso, J. V. The South Pacific pressure trend dipole and the southern blob. J. Clim. 34, 7661–7676 (2021).

    Article  Google Scholar 

  19. Arroyo, M. T. K. et al. Extreme drought affects visitation and seed set in a plant species in the Central Chilean Andes heavily dependent on hummingbird pollination. Plants 9, 1553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fettig, C. J., Mortenson, L. A., Bulaon, B. M. & Foulk, P. B. Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. For. Ecol. Manage. 432, 164–178 (2019).

  21. Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matusick, G., Ruthrof, K. X., Brouwers, N. C., Dell, B. & Hardy, G. S. J. Sudden forest canopy collapse corresponding with extreme drought and heat in a Mediterranean-type eucalypt forest in southwestern Australia. Eur. J. Res. 132, 497–510 (2013).

    Article  Google Scholar 

  23. Andivia, E. et al. Climate and species stress resistance modulate the higher survival of large seedlings in forest restorations worldwide. Ecol. Appl. 31, e02394 (2021).

    Article  PubMed  Google Scholar 

  24. Schenk, H. J. et al. Hydraulic integration and shrub-growth form linked across continental aridity gradients. Proc. Natl Acad. Sci. USA 105, 11248–11253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nolan, R. H. et al. Limits to post‐fire vegetation recovery under climate change. Plant Cell Environ. 44, 3471–3489 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Holmgren, M. Exotic herbivores as drivers of plant invasion and switch to ecosystem alternative states. Biol. Invasions 4, 25–33 (2002).

    Article  Google Scholar 

  27. Chávez, R. O. et al. A probabilistic multi-source remote sensing approach to evaluate extreme precursory drought conditions of a wildfire event in Central Chile. Front. Environ. Sci. 10, 865406 (2022).

    Article  Google Scholar 

  28. Smith-Ramírez, C. et al. Recovery of Chilean Mediterranean vegetation after different frequencies of fires. For. Ecol. Manage. 485, 118922 (2021).

  29. Venegas-González, A. et al. Sclerophyllous forest tree growth under the influence of a historic mega-drought in the Mediterranean Ecoregion of Chile. Ecosystems 26, 344–361 (2023).

  30. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article  Google Scholar 

  31. Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).

    Article  PubMed  Google Scholar 

  33. Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ackerly, D. D., Stock, W. D. & Slingsby, J. A. in Fynbos (eds Allsopp, N. et al.) 361–376 (Oxford Univ. Press, 2014).

  36. Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1 km resolution. Sci. Data 5, 180214 (2018).

  37. Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).

  38. Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–Present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  39. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  41. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  42. Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. EarthData https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).

  43. Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006. EarthData https://doi.org/10.5067/MODIS/MCD64A1.006 (2015).

  44. Zhao, Y. et al. Detailed dynamic land cover mapping of Chile: accuracy improvement by integrating multi-temporal data. Remote Sens. Environ. 183, 170–185 (2016).

    Article  Google Scholar 

  45. Miranda, A. et al. Forest browning trends in response to drought in a highly threatened Mediterranean landscape of South America. Ecol. Indic. 115, 106401 (2020).

    Article  Google Scholar 

  46. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M., S.G, A.L. and R.G. thank ANID/FONDAP/15110009, and A.M. thanks ANID Postdoctoral Fondecyt project 3210101. F.S. thanks ANID grants FB210006 and ACE210006 to the Institute of Ecology and Biodiversity (IEB). A.M. and J.C. acknowledges the support of the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101037419, and J.C. acknowledges Postdoctoral Fondecyt project 3210311. S.G. thanks FORPES project PID2019-106908RA-I00/AEI/10.13039/501100011033 from MICINN, Spain. J.F.O. was supported by the Chilean Foundation of Science and Technology (FONDECYT) Grant 11191147. We also thank the Center of Applied Ecology and Sustainability (CAPES) project PIA/BASAL FB0002. S.V. thanks ANID no. 9219/2022 Concurso Subvención a la Instalación en la Academia, Code 85220080.

Author information

Authors and Affiliations

Authors

Contributions

A.M., R.G., A.D.S., M.B., A.L. and S.G.-G. conceptualized the project. A.M., R.G. and J.C. developed the methodology. A.M., R.G., R.M., J.C. and M.D.M. curated data. A.M., R.G., R.M., J.C. and M.D.M. conducted formal analysis. A.M., R.G., R.M. and M.D.M. performed visualization. A.M., R.G., F.A.S., M.D.M., J.F.O., C.A.D. and A.L. acquired funding. A.M., J.F.O., C.A.D. and S.V. administered the project. A.M., R.G., A.D.S., M.B., M.D.M., S.G. and A.L. wrote the original draft, which was reviewed and edited by A.M., R.G., J.F.O., A.D.S., M.B., F.A.S., C.A.D., S.V., M.D.M., C.D., S.G. and A.L.

Corresponding author

Correspondence to Alejandro Miranda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Víctor Resco de Dios and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs.1–4 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Annual regional mean NDVI for all MTEs.

Source Data Fig. 2

The 1901–2020 annual precipitation anomalies for all MTEs. The 1901–2020 11-year mean-precipitation anomalies for all MTEs. The 1901–2020 11-year mean-maximum temperature anomalies for all MTEs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, A., Syphard, A.D., Berdugo, M. et al. Widespread synchronous decline of Mediterranean-type forest driven by accelerated aridity. Nat. Plants 9, 1810–1817 (2023). https://doi.org/10.1038/s41477-023-01541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01541-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing