Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule targeted accessibility and methylation sequencing of centromeres, telomeres and rDNAs in Arabidopsis

Abstract

The short read-length of next-generation sequencing makes it challenging to characterize highly repetitive regions (HRRs) such as centromeres, telomeres and ribosomal DNAs. Based on recent strategies that combined long-read sequencing and exogenous enzymatic labelling of open chromatin, we developed single-molecule targeted accessibility and methylation sequencing (STAM-seq) in plants by further integrating nanopore adaptive sampling to investigate the HRRs in wild-type Arabidopsis and DNA methylation mutants that are defective in CG- or non-CG methylation. We found that CEN180 repeats show higher chromatin accessibility and lower DNA methylation on their forward strand, individual rDNA units show a negative correlation between their DNA methylation and accessibility, and both accessibility and CHH methylation levels are lower at telomere compared to adjacent subtelomeric region. Moreover, DNA methylation-deficient mutants showed increased chromatin accessibility at HRRs, consistent with the role of DNA methylation in maintaining heterochromatic status in plants. STAM-seq can be applied to study accessibility and methylation of repetitive sequences across diverse plant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STAM-seq simultaneously profiles chromatin accessibility and DNA methylation in HRR regions.
Fig. 2: Strand-specific analysis of epigenetic patterns in the centromeric region.
Fig. 3: Single-molecule analysis of the chromatin accessibility and DNA methylation at centromeric region.
Fig. 4: STAM-seq reveals distinct epigenetic patterns of rRNA gene variants.
Fig. 5: Chromatin accessibility and DNA methylation on telomeric region.

Similar content being viewed by others

Data availability

The STAM-seq data generated in this study have been deposited in the Genome Sequence Archive in National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA008945) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa. Source data are provided with this paper.

Code availability

Source code for analysis is available at https://github.com/ZhaiLab-SUSTech/STAM-seq/.

References

  1. Lloyd, J. P. B. & Lister, R. Epigenome plasticity in plants. Nat. Rev. Genet. 23, 55–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Lu, Z., Hofmeister, B. T., Vollmers, C., DuBois, R. M. & Schmitz, R. J. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 45, e41 (2017).

    Article  PubMed  Google Scholar 

  3. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2012).

    Article  CAS  Google Scholar 

  5. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naish, M. et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374, eabi7489 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hou, X., Wang, D., Cheng, Z., Wang, Y. & Jiao, Y. A near-complete assembly of an Arabidopsis thaliana genome. Mol. Plant https://doi.org/10.1016/j.molp.2022.05.014 (2022).

    Article  PubMed  Google Scholar 

  8. Ni, P. et al. Genome-wide detection of cytosine methylations in plant from nanopore data using deep learning. Nat. Commun. 12, 5976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01108-x (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9, e59404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. 39, 442–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, Z. et al. DNA N-adenine methylation in Arabidopsis thaliana. Dev. Cell 45, 406–416.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L. & Martienssen, R. A. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet. 1, e79 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, Z.-W., Liu, J., Liu, F. & Zhong, X. Depositing centromere repeats induces heritable intragenic heterochromatin establishment and spreading in Arabidopsis. Nucleic Acids Res. 51, 6039–6054 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y. et al. Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Res. 31, 1409–1418 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu, Q. et al. Non–B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc. Natl Acad. Sci. USA 120, e2211683120 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Du, Y., Topp, C. N. & Dawe, R. K. DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet. 6, e1000835 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo, S. & Preuss, D. Strand-biased DNA methylation associated with centromeric regions in Arabidopsis. Proc. Natl Acad. Sci. USA 100, 11133–11138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wlodzimierz, P. et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature https://doi.org/10.1038/s41586-023-06062-z (2023).

    Article  PubMed  Google Scholar 

  26. Wright, D. A. & Voytas, D. F. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12, 122–131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, S. C. et al. Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res. 30, 576–588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhong, Z. et al. DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2023347118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Copenhaver, G. P. & Pikaard, C. S. Two‐dimensional RFLP analyses reveal megabase‐sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J. 9, 273–282 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Sáez-Vásquez, J. & Delseny, M. Ribosome biogenesis in plants: from functional 45S ribosomal DNA organization to ribosome assembly factors. Plant Cell 31, 1945–1967 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pontvianne, F. et al. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet. 6, e1001225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fultz, D., McKinlay, A., Enganti, R. & Pikaard, C. S. Sequence and epigenetic landscapes of active and silenced nucleolus organizers in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2023.06.07.544131 (2023).

  37. Tucker, S., Vitins, A. & Pikaard, C. S. Nucleolar dominance and ribosomal RNA gene silencing. Curr. Opin. Cell Biol. 22, 351–356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bailey, S. M., Cornforth, M. N., Kurimasa, A., Chen, D. J. & Goodwin, E. H. Strand-specific postreplicative processing of mammalian telomeres. Science 293, 2462–2465 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Richards, E. J. & Ausubel, F. M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Richards, E. J., Goodman, H. M. & Ausubel, F. M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 19, 3351–3357 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vaquero-Sedas, M. I., Luo, C. & Vega-Palas, M. A. Analysis of the epigenetic status of telomeres by using ChIP-seq data. Nucleic Acids Res. 40, e163–e163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shay, J. W. & Wright, W. E. Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299–309 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Dubocanin, D. et al. Single-molecule architecture and heterogeneity of human telomeric DNA and chromatin. Preprint at bioRxiv https://doi.org/10.1101/2022.05.09.491186 (2022).

  44. Riha, K., McKnight, T. D., Fajkus, J., Vyskot, B. & Shippen, D. E. Analysis of the G-overhang structures on plant telomeres: evidence for two distinct telomere architectures. Plant J. 23, 633–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yue, X. et al. Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nat. Commun. 13, 7939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat. Methods https://doi.org/10.1038/s41592-022-01475-6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weng, Z. et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol. 24, 61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song, J.-M. et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

  52. Mathieu, O., Reinders, J., Čaikovski, M., Smathajitt, C. & Paszkowski, J. Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130, 851–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Long, Y., Jia, J., Mo, W., Jin, X. & Zhai, J. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing. Nat. Protoc. https://doi.org/10.1038/s41596-021-00581-7 (2021).

    Article  PubMed  Google Scholar 

  54. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  Google Scholar 

  58. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rigal, M. et al. Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc. Natl Acad. Sci. USA 113, E2083–E2092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (32270631 to X.D.), the Youth Innovation Promotion Association of CAS (2018131), the National Key R&D Program of China Grant (2019YFA0903903), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2016ZT06S172), the Shenzhen Sci-Tech Fund (KYTDPT20181011104005), the Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes (2019KSYS006), the Stable Support Plan Program of Shenzhen Natural Science Fund Grant (20200925153345004), the Youth Innovation Promotion Association of CAS (Y2022039) and the Center for Computational Science and Engineering at Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., W.M. and Y.S. conceived and designed the experiments. Y.S., W.M., Y.L. and B.L. performed the experiments. W.M. and Y.S. analysed the data. J.Z. and X.D. oversaw the study. X.C. and T.L. provided conceptual insight. W.M., Y.S., J.Z. and X.D. wrote the manuscript, and all authors revised the manuscript.

Corresponding authors

Correspondence to Xian Deng or Jixian Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ian Henderson, James Walker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The fraction of bases called as 6 mA in the libraries.

Arabidopsis genomic DNA was treated with or without the EcoGII enzyme. Shown are the average methylation levels for A nucleotides.

Extended Data Fig. 2 Sequencing coverage of HRR regions relative to non-HRR regions in the library with or without adaptive sampling.

The target regions include centromeres, telomeres, and 45 S rDNA in Arabidopsis genome.

Extended Data Fig. 3 Comparison of STAM-seq with WGBS.

The IGV genomic tracks display a target region located adjacent to the left telomere on Chromosome 1. The tracks show the DNA methylation levels observed in the CG, CHG, and CHH contexts of aggregated STAM-seq data compared to previously published WGBS data (ENA accession PRJEB9919).

Extended Data Fig. 4 Comparison of DNA methylation levels between wildtype and mutants over transposable elements (TE) and gene bodies.

a. Metaplots of DNA methylation levels in CG, CHG, and CHH contexts over TE in wildtype and mutant samples. b. Metaplots of DNA methylation levels in CG, CHG, and CHH contexts over gene bodies in wildtype and mutant samples.

Extended Data Fig. 5 Comparison of STAM-seq profiles between replicates.

a. Correlation of STAM-seq accessibility signal between replicates over promoters. Shown is the average 6 mA ratio over the TSS ± 200. b-d. The correlation of STAM-seq DNA methylation levels between replicates. Methylation levels for CG, CHG, and CHH were illustrated in panels b, c, and d, respectively.

Extended Data Fig. 6 Strand-specific analysis of accessibility for genic regions.

a, b. The strand-specific view of chromatin accessibility and DNA methylation signal at genic region. Only reads that fully spanned the region were shown. The reads in each panel are arranged from top to bottom in order of increased chromatin accessibility. c. Metaplots illustrating the chromatin accessibility signal over genes from different strands. The blue color corresponds to the forward strand (5′→3′) of the reference genome, while the red color represents the reverse strand (3′→5′).

Extended Data Fig. 7 Strand-specific analysis for centromeric region.

a. Strand-specific view of CG methylation for the centromeric region. The reads in each panel are arranged from top to bottom in order of decreased CG methylation. b. Strand-specific view of CHH methylation for the centromeric region. The reads in each panel are arranged from top to bottom in order of decreased CHH methylation. c. Strand-specific view of chromatin accessibility signal for the centromeric region. Only reads that fully spanned the region were shown. The inaccessible reads (accessibility signal = 0) are highlighted by brackets. The reads in each panel are arranged from top to bottom in order of increased chromatin accessibility. d. Distribution of the accessibility signal for the example depicted in (c). The dotted line marks the division between accessible and inaccessible reads, with the left side representing the region containing the inaccessible reads.

Extended Data Fig. 8 Epigenetic patterns over the 45S rRNA genes.

a. Metaplots of accessibility (top) and DNA methylation (bottom) over the 45S rRNA genes. The schematic of 45S rRNA gene region was shown on the top. b. Metaplots of accessibility (top) and DNA methylation (bottom) at transcription initiation site (TATATAGGGGG, +1 is underlined) of the 45S rRNA genes. The accessibility signal reveals the nucleosome positioning pattern.

Extended Data Fig. 9 Epigenetic patterns between different 45S rDNA classes.

a, d. Metaplots of accessibility (a), CG methylation (b), CHG methylation (c), and CHH methylation (d) in different 45S rRNA gene variants.

Extended Data Fig. 10 DNA methylation level of the three consecutive cytosines in the telomeric repeat.

The methylation level was calculated as the ratio of 5-methylcytosine (5mC) to total cytosine (C) at these positions.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–10.

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, W., Shu, Y., Liu, B. et al. Single-molecule targeted accessibility and methylation sequencing of centromeres, telomeres and rDNAs in Arabidopsis. Nat. Plants 9, 1439–1450 (2023). https://doi.org/10.1038/s41477-023-01498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01498-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research