Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation

Abstract

The DELLA genes, also known as ‘Green Revolution’ genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein–protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF–RGA–H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA–H2A interaction via the PFYRE subdomain is necessary to stabilize the TF–DELLA–H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: All missense rga hypomorphs are clustered within the GRAS domain.
Fig. 2: Missense rga mutant proteins showed varying degrees of reduced activity.
Fig. 3: Y2H assay showed rga mutations in the LHR1 subdomain reduced interaction with BZR1, PIF3 and TCP14, whereas rga-2 and rga-11 in PFYRE did not.
Fig. 4: Pulldown and co-IP assays showed rga mutations in the LHR1 subdomain reduced interaction with BZR1, PIF3 and IDD3, whereas rga-2 and rga-11 in PFYRE did not.
Fig. 5: rga mutations in the PFYRE subdomain impaired association with target chromatin globally by ChIP–seq analysis.
Fig. 6: cis-Elements for bHLH, bZIP, TCP and IDD TFs were most enriched near RGA binding peaks associated with RGA direct target genes.
Fig. 7: rga-2 and rga-11 reduced RGA binding to histone H2A.
Fig. 8: Working model of DELLA-mediated transcriptional regulation.

Similar content being viewed by others

Data availability

Raw and processed ChIP–seq data and ATAC-seq data have been deposited at the National Center for Biotechnology Information’s Gene Expression Omnibus (accession numbers GSE220898 and GSE233124, respectively). Source data are provided with this paper.

References

  1. Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366, eaax0025 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Sun, T. P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21, R338–R345 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Silverstone, A. L., Ciampaglio, C. N. & Sun, T.-P. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155–169 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Peng, J. et al. The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hernandez-Garcia, J., Briones-Moreno, A. & Blazquez, M. A. Origin and evolution of gibberellin signaling and metabolism in plants. Semin. Cell Dev. Biol. 109, 46–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Daviere, J. M. & Achard, P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 9, 10–20 (2016).

    Article  CAS  Google Scholar 

  8. Van De Velde, K. et al. Exploiting DELLA signaling in cereals. Trends Plant Sci. 22, 880–893 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Pysh, L. D. et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Tian, C. et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol. Biol. 54, 519–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Silverstone, A. L. et al. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Dill, A., Jung, H.-S. & Sun, T.-P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl Acad. Sci. USA 98, 14162–14167 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    Article  CAS  Google Scholar 

  14. Griffiths, J. et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18, 3399–3414 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1898 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. McGinnis, K. M. et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15, 1120–1130 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Murase, K., Hirano, Y., Sun, T.-P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Shimada, A. et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Zentella, R. et al. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19, 3037–3057 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Serrano-Mislata, A. et al. DELLA genes restrict inflorescence meristem function independently of plant height. Nat. Plants 3, 749–754 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Marin-de la Rosa, N. et al. Genome wide binding site analysis reveals transcriptional coactivation of cytokinin-responsive genes by DELLA proteins. PLoS Genet. 11, e1005337 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Marin-de la Rosa, N. et al. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. Plant Physiol. 166, 1022–1032 (2014).

    Article  PubMed  Google Scholar 

  23. Lantzouni, O. et al. GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress. Plant Cell 32, 1018–1034 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  24. Feng, S. et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475–479 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  PubMed  Google Scholar 

  26. Oh, E. et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3, e03031 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hu, J., Israeli, A., Ori, N. & Sun, T. P. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. Plant Cell 30, 1710–1728 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bai, M. Y. et al. Brassinosteroid, gibberellin, and phytochrome signalling pathways impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 14, 810–817 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hou, X. et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19, 884–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, D. L. et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl Acad. Sci. USA 109, E1192–E1200 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Daviere, J. M. et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr. Biol. 24, 1923–1928 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Lim, S. et al. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25, 4863–4878 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yoshida, H. et al. DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proc. Natl Acad. Sci. USA 111, 7861–7866 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Fukazawa, J. et al. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 26, 2920–2938 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sarnowska, E. A. et al. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiol. 163, 305–317 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhang, D., Jing, Y., Jiang, Z. & Lin, R. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell 26, 2472–2485 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Park, J. et al. GA signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions. Plant Physiol. 173, 1463–1474 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Locascio, A., Blazquez, M. A. & Alabadi, D. Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr. Biol. 23, 804–809 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Dill, A., Thomas, S. G., Hu, J., Steber, C. M. & Sun, T.-P. The Arabidopsis F-box protein SLEEPY1 targets GA signaling repressors for GA-induced degradation. Plant Cell 16, 1392–1405 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chandler, P. M. & Harding, C. A. ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘green revolution’ DELLA gene. J. Exp. Bot. 64, 1603–1613 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hirano, K. et al. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J. 71, 443–453 (2012).

    CAS  PubMed  Google Scholar 

  42. Ikeda, A. et al. slender rice, a constitutive gibberellin response mutant is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Muangprom, A., Thomas, S. G., Sun, T. P. & Osborn, T. C. A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant Physiol. 137, 931–938 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hirano, K. et al. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22, 2680–2696 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zentella, R. et al. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev. 30, 164–176 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Silverstone, A. L., Mak, P. Y. A., Casamitjana Martínez, E. & Sun, T.-P. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146, 1087–1099 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Matsuo, N., Minami, M., Maeda, T. & Hiratsuka, K. Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol. 18, 71–75 (2001).

    Article  CAS  Google Scholar 

  48. Zhang, Z. L. et al. SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing DELLA in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 2160–2165 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hirano, Y. et al. Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD. Nat. Plants 3, 17010 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Dill, A. & Sun, T.-P. Synergistic de-repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159, 777–785 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. King, K., Moritz, T. & Harberd, N. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159, 767–776 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Oh, E., Zhu, J. Y. & Wang, Z. Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802–809 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Barbour, H., Daou, S., Hendzel, M. & Affar, E. B. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat. Commun. 11, 5947 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Colino-Sanguino, Y., Clark, S. J. & Valdes-Mora, F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet. 38, 273–289 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Long, J., Carter, B., Johnson, E. T. & Ogas, J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin. Cell Dev. Biol. 135, 85–92 (2023).

    Article  CAS  Google Scholar 

  57. Yin, X. et al. H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots. Nat. Commun. 12, 315 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhou, Y., Romero-Campero, F. J., Gomez-Zambrano, A., Turck, F. & Calonje, M. H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity. Genome Biol. 18, 69 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lei, B. & Berger, F. H2A variants in Arabidopsis: versatile regulators of genome activity. Plant Commun. 1, 100015 (2020).

    Article  PubMed  Google Scholar 

  60. Sura, W. et al. Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell 29, 791–807 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  61. Gomez-Zambrano, A., Merini, W. & Calonje, M. The repressive role of Arabidopsis H2A.Z in transcriptional regulation depends on AtBMI1 activity. Nat. Commun. 10, 2828 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Wollmann, H. et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol. 18, 94 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  63. Yang, T. et al. Chromatin remodeling complexes regulate genome architecture in Arabidopsis. Plant Cell 34, 2638–2651 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  64. Yamaguchi, N. et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344, 638–641 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Jin, R. et al. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat. Commun. 12, 626 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tyler, L. et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135, 1008–1019 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Park, J., Nguyen, K. T., Park, E., Jeon, J. S. & Choi, G. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25, 927–943 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Steber, C. M. & McCourt, P. A role for brassinosteroids in germination in Arabidopsis thaliana. Plant Physiol. 125, 763–769 (2000).

    Article  Google Scholar 

  69. Zentella, R. et al. The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat. Chem. Biol. 13, 479–485 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Zentella, R. et al. SPINDLY O-fucosylates nuclear and cytoplasmic proteins involved in diverse cellular processes in plants. Plant Physiol. 191, 1546–1560 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zhou, X. et al. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiol. 171, 2760–2770 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wong, K. H., Jin, Y. & Moqtaderi, Z. Multiplex Illumina sequencing using DNA barcoding. Curr. Protoc. Mol. Biol. 7, 7.11.11–17.11.11 (2013).

    Google Scholar 

  74. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP–seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Bajic, M., Maher, K. A. & Deal, R. B. Identification of open chromatin regions in plant genomes using ATAC-seq. Methods Mol. Biol. 1675, 183–201 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).

    Article  Google Scholar 

  78. Potter, K. C., Wang, J., Schaller, G. E. & Kieber, J. J. Cytokinin modulates context-dependent chromatin accessibility through the type-B response regulators. Nat. Plants 4, 1102–1111 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed Central  Google Scholar 

  81. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Diego-Martin, B. et al. The TRIPLE PHD FINGERS proteins are required for SWI/SNF complex-mediated +1 nucleosome positioning and transcription start site determination in Arabidopsis. Nucleic Acids Res. 50, 10399–10417 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Chen, K. et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23, 341–351 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Choi for helpful discussions and for sharing Arabidopsis lines and constructs. This work was supported by the National Institutes of Health (R01 GM100051 to T.-P.S.) and the National Science Foundation (MCB-1818161 to T.-P.S., and NSF-EDGE-1923589 to D.-H.O. and M.D.). We also acknowledge Louisiana State University High Performance Computing services for providing computational resources.

Author information

Authors and Affiliations

Authors

Contributions

J.P. and T.-P.S. conceived and designed the research project. R.Z. provided helpful suggestions. H.Q. provided constructs and protocols. X.H., H.T., J.P., J.H. and R.Z. performed experiments. X.H., H.T., J.P., J.H., R.Z. and T.-P.S. analysed the data and generated figures. D.-H.O., J.P., H.T. and M.D. performed analysis for the ChIP–seq data and generated figures. T.-P.S. wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Tai-Ping Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11; Fig. 11 is the source data figure for the supplementary figures.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Supplementary Data

Statistical source data for Supplementary Figs. 1–3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Figs. 1, 3, 4 and 7

Unprocessed blots and gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Tian, H., Park, J. et al. The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation. Nat. Plants 9, 1291–1305 (2023). https://doi.org/10.1038/s41477-023-01477-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01477-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing