Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation

Abstract

Legumes form symbiosis with rhizobium leading to the development of nitrogen-fixing nodules. By integrating single-nucleus and spatial transcriptomics, we established a cell atlas of soybean nodules and roots. In central infected zones of nodules, we found that uninfected cells specialize into functionally distinct subgroups during nodule development, and revealed a transitional subtype of infected cells with enriched nodulation-related genes. Overall, our results provide a single-cell perspective for understanding rhizobium–legume symbiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combined single-nucleus and spatial transcriptomes reveal nodule heterogeneity at different developmental stages.
Fig. 2: Dissection of central infected zone reveals distinct subtypes of nodule cells.
Fig. 3: A rare subcluster of ICs is essential for nodule maturation and function.

Similar content being viewed by others

Data availability

The data generated in this study are deposited in the China National Center for Bioinformation with accession PRJCA009893. Raw sequencing data are deposited in GSA with accession CRA007122 and processed data are deposited in OMIX with accession OMIX002290. Source data are provided with this paper.

Code availability

The source code to reproduce this project can be accessed at https://github.com/ZhaiLab-SUSTech/soybean_sn_st.

References

  1. Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser‐capture microdissection coupled to RNA sequencing. Plant J. 77, 817–837 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Roux, B., Rodde, N., Moreau, S., Jardinaud, M.-F. & Gamas, P. in Plant Transcription Factors (eds Yamaguchi, N. et al.) 191–224 (Springer, 2018).

  4. Wang, L. et al. Single cell-type transcriptome profiling reveals genes that promote nitrogen fixation in the infected and uninfected cells of legume nodules. Plant Biotechnol. J. 20, 616–618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan, W. et al. Rhizobial infection of 4C cells triggers their endoreduplication during symbiotic nodule development in soybean. New Phytol. 234, 1018–1030 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Ye, Q. et al. Differentiation trajectories and biofunctions of symbiotic and un-symbiotic fate cells in root nodules of Medicago truncatula. Mol. Plant 15, 1852–1867 (2022).

    Article  CAS  Google Scholar 

  7. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shahan, R. et al. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev. Cell 57, 543–560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xia, K. et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57, 1299–1310 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Newcomb, E. H. & Tandon, S. R. Uninfected cells of soybean root nodules: ultrastructure suggests key role in ureide production. Science 212, 1394–1396 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Hanks, J. F., Schubert, K. & Tolbert, N. Isolation and characterization of infected and uninfected cells from soybean nodules: role of uninfected cells in ureide synthesis. Plant Physiol. 71, 869–873 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Appleby, C. A. Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35, 443–478 (1984).

    Article  CAS  Google Scholar 

  13. Luo, Y., Liu, W., Sun, J., Zhang, Z.-R. & Yang, W.-C. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J. Genet. Genomics 50, 7–19 (2022).

  14. Zhang, B. et al. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nat. Plants 7, 73–86 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Yun, J. et al. The miR156b‐GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytol. 233, 1881–1899 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J., Liu, M. X., Qiu, L. P. & Xie, F. SPIKE1 activates the GTPase ROP6 to guide the polarized growth of infection threads in Lotus japonicus. Plant Cell 32, 3774–3791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray, J. D. et al. Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J. 65, 244–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Xie, F. et al. Legume pectate lyase required for root infection by rhizobia. Proc. Natl Acad. Sci. USA 109, 633–638 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Li, X. et al. Atypical receptor kinase RINRK1 required for rhizobial infection but not nodule development in Lotus japonicus. Plant Physiol. 181, 804–816 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arrighi, J.-F. et al. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc. Natl Acad. Sci. USA 105, 9817–9822 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sinharoy, S. et al. A Medicago truncatula cystathionine-β-synthase-like domain-containing protein is required for rhizobial infection and symbiotic nitrogen fixation. Plant Physiol. 170, 2204–2217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Libault, M. et al. Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol. 152, 541–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan, Y.-l. et al. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biol. 20, 208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, Y., Wang, T., Zhang, W. & Li, X. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol. 189, 1122–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Oh, H.-S. et al. The Bradyrhizobium japonicum hsfA gene exhibits a unique developmental expression pattern in cowpea nodules. Mol. Plant Microbe Interact. 14, 1286–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Pessi, G. et al. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol. Plant Microbe Interact. 20, 1353–1363 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Thibivilliers, S., Anderson, D. & Libault, M. Isolation of plant root nuclei for single cell RNA sequencing. Curr. Protoc. Plant Biol. 5, e20120 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Long, Y. et al. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol. 22, 66 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Germain, P.-L., Lun, A., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Research 10, 979 (2022).

    Article  PubMed Central  Google Scholar 

  32. Xu, C. et al. Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Timshel, P. N., Thompson, J. J. & Pers, T. H. Genetic mapping of etiologic brain cell types for obesity. eLife 9, e55851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xi, N. M. & Li, J. J. Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis. STAR Protoc. 2, 100699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xi, N. M. & Li, J. J. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst. 12, 176–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, L. et al. Single cell-type transcriptome profiling reveals genes that promote nitrogen fixation in the infected and uninfected cells of legume nodules. Plant Biotechnol. J. 20, 616–618 (2022).

  48. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. Genome Biol. 3, research0008.1 (2002).

    Article  Google Scholar 

  49. Qiao, X. et al. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 20, 38 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

  51. Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19, 179–186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21, 111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bredikhin, D., Kats, I. & Stegle, O. Muon: multimodal omics analysis framework. Genome Biol. 23, 42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of the Chinese Academy of Sciences, Grant No. ZDRW-ZS-2019-2; Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA28030100 and XDA24010205; the Agricultural Science and Technology Innovation Program; the CAS Project for Young Scientists in Basic Research (YSBR-011) and NSFC General Projects (32272101). The group of J.Z. was supported by a National Key R&D Program of China Grant (2019YFA0903903); an NSFC grant to J.Z. (31871234); the Shenzhen Sci-Tech Fund (KYTDPT20181011104005); the Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes (2019KSYS006); the Stable Support Plan Program of Shenzhen Natural Science Fund Grant (20200925153345004); and the Center for Computational Science and Engineering at Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., X.K., Y.L., S.L., W.C. and Z.Z. performed the experiments. Z.L., Y.L., H.Z. and J.J. analysed the data. Z.Y., J.Z., Z.L., X.K. and Y.L. wrote the manuscript. Z.Y. and J.Z. oversaw the study. L.Q. and X.S. provided conceptual insight.

Corresponding authors

Correspondence to Jixian Zhai or Zhe Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Hon-Ming Lam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Heatmap representing the expression pattern of up-regulated genes for each cluster.

Extended Data Fig. 2

UMAP visualizations of clustering results (a) and cell-type specific marker genes (b).

Extended Data Fig. 3 Annotation results using public resources, including marker genes and scRNA-seq data of Arabidopsis.

a. UMAP visualizations of annotation results. Unidentified cluster is masked by grey colour. “*” indicates this cluster is annotated by label transfer method. b. Bar chart represents the percentage of different samples in each clusters. Left, successfully identified clusters. Right, un-identified clusters.

Extended Data Fig. 4 Bright-field image of soybean nodule sections used to prepare the spatial transcriptome.

Two replicates were used as the figure illustrated. Scale bars, 500 μm.

Extended Data Fig. 5 Using cluster-based method to annotate snRNA-seq datasets.

a. Clustering and annotation results of Stereo-seq datasets. b. Expression patterns of spatially transcriptome-identified cell-type upregulated genes in Stereo-seq (upper panel) and snRNA-seq (lower panel). We did not identify up-regulated genes in the epidermis from the spatial transcriptomes, so they were not mapped.

Extended Data Fig. 6 Validation of cluster-specific marker genes by RNA in situ hybridization.

These experiments were repeated in three independent assays and for each section, at least three nodules were analysed, and all showed the same expression pattern.

Extended Data Fig. 7 UMAP visualizations and RNA in situ hybridization of expression pattern of 12-0 and 12-1 specific genes that used in Fig. 2g.

Scale bars, 100 μm. These experiments were repeated in three independent assays and for each section, at least three nodules were analysed, and all showed the same expression pattern.

Extended Data Fig. 8 Developmental trajectory of UCs inferred by scVelo (a) and Monocle 3 (b).

a. Left panel, stream plot of RNA velocities on the UMAP embedding. Right panel, partition-based graph abstraction (PAGA) graph with velocity-directed edges. Arrow width indicates the transition probability between different clusters. b. Pseudo temporal ordering of nuclei after manually specified developmental root cells.

Extended Data Fig. 9

Expression pattern of four leghemoglobin genes and eleven nodulin genes.

Extended Data Fig. 10 Expression pattern of 12-1 specific genes.

Blue box, known SNF genes or homologs of known SNF genes in soybean. Asterisk indicates SNF genes collected by Roy et al1. Red box, GLYMA_02G004800, the example we used to explore the potential function of subcluster 12-1.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Reporting Summary

Supplementary Data 1–10

Tab 1. Gene detected information of snRNA-seq datasets. Tab 2. Upregulated genes and specific genes identified from snRNA-seq datasets. Tab 3. Differentially expressed genes in each cluster. Tab 4. Used marker genes for annotation. Tab 5. Upregulated genes identified from stereo-seq datasets. Tab 6. Used UC- and IC-upregulated genes. Tab 7. Specific genes of IC subclusters. Tab 8. Primer and vector information. Tab 9. Upregulated genes of stele subclusters. Tab 10. Upregulated genes of stele subclusters.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Kong, X., Long, Y. et al. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat. Plants 9, 515–524 (2023). https://doi.org/10.1038/s41477-023-01387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01387-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing