Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity

Abstract

Understanding the causes of the arrest of species distributions has been a fundamental question in ecology and evolution. These questions are of particular interest for trees owing to their long lifespan and sessile nature. A surge in data availability evokes a macro-ecological analysis to determine the underlying forces limiting distributions. Here we analyse the spatial distribution of >3,600 major tree species to determine geographical areas of range-edge hotspots and find drivers for their arrest. We confirmed biome edges to be strong delineators of distributions. Importantly, we identified a stronger contribution of temperate than tropical biomes to range edges, adding strength to the notion that tropical areas are centres of radiation. We subsequently identified a strong association of range-edge hotspots with steep spatial climatic gradients. We linked spatial and temporal homogeneity and high potential evapotranspiration in the tropics as the strongest predictors of this phenomenon. We propose that the poleward migration of species in light of climate change might be hindered because of steep climatic gradients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Range-edge hotspots.
Fig. 2: REH at intersections between biomes.
Fig. 3: Climatic predictors of RE formation.

Similar content being viewed by others

Data availability

The occurrence points used from GBIF can be found on the GBIF webpage (https://doi.org/10.15468/dl.ajen6k). Polygons generated from occurrence points are provided in the public Zenodo repository 10.5281/zenodo.7613535. Biome polygons were obtained from the WWF webpage (http://www.worldwildlife.org/). Bioclimatic attributes were downloaded from WorldClim Global Climate Data58. ENVIREM variables were downloaded from their webpage (https://envirem.github.io/).

Code availability

Custom codes related to this paper can be found in a GitHub repository at https://github.com/dlernerg/Global-Range-edges

References

  1. Soule, M. The epistasis cycle: a theory of marginal populations. Annu. Rev. Ecol. Syst. 4, 165–187 (1973).

    Article  Google Scholar 

  2. Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    Article  Google Scholar 

  3. Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).

  4. Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article  Google Scholar 

  5. Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goldberg, E. E. & Lande, R. Species’ borders and dispersal barriers. Am. Nat. 170, 297–304 (2007).

    Article  PubMed  Google Scholar 

  8. Bachmann, J. C., Rensburg, A. J. V., Cortazar-Chinarro, M., Laurila, A. & Buskirk, J. V. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).

    Article  PubMed  Google Scholar 

  9. Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).

    Article  PubMed  Google Scholar 

  10. Henry, R. C., Bartoń, K. A. & Travis, J. M. J. Mutation accumulation and the formation of range limits. Biol. Lett. 11, 20140871 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Perrier, A., Sánchez-Castro, D. & Willi, Y. Environment dependence of the expression of mutational load and species’ range limits. J. Evol. Biol. 35, 731–741 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bontrager, M. et al. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75, 1316–1333 (2021).

    Article  PubMed  Google Scholar 

  13. Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).

    Article  Google Scholar 

  14. Oldfather, M. F., Kling, M. M., Sheth, S. N., Emery, N. C. & Ackerly, D. D. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob. Chang. Biol. 26, 1055–1067 (2020).

    Article  PubMed  Google Scholar 

  15. Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  16. Maxwell, M. F., Leprieur, F., Quimbayo, J. P., Floeter, S. R. & Bender, M. G. Global patterns and drivers of beta diversity facets of reef fish faunas. J. Biogeogr. 49, 954–967 (2022).

    Article  Google Scholar 

  17. Roy, K., Hunt, G., Jablonski, D., Krug, A. Z. & Valentine, J. W. A macroevolutionary perspective on species range limits. Proc. R. Soc. B 276, 1485–1493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donoghue, M. J. & Edwards, E. J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45, 547–572 (2014).

    Article  Google Scholar 

  21. Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M. & Hughes, C. E. Biomes as evolutionary arenas: convergence and conservatism in the trans-continental succulent biome. Glob. Ecol. Biogeogr. 29, 1100–1113 (2020).

    Article  Google Scholar 

  22. Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).

    Article  PubMed  Google Scholar 

  23. Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article  Google Scholar 

  24. Pichancourt, J. B., Firn, J., Chadès, I. & Martin, T. G. Growing biodiverse carbon-rich forests. Glob. Chang. Biol. 20, 382–393 (2014).

    Article  PubMed  Google Scholar 

  25. Pennington, R. T., Lavin, M. & Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437–457 (2009).

    Article  Google Scholar 

  26. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Chang. Biol. 18, 1042–1052 (2012).

    Article  Google Scholar 

  27. Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article  PubMed  Google Scholar 

  28. la Sorte, F. A., Butchart, S. H. M., Jetz, W. & Böhning-Gaese, K. Range-wide latitudinal and elevational temperature gradients for the world’s terrestrial birds: implications under global climate change. PLoS One 9, e98361 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Article  Google Scholar 

  30. Veresoglou, S. D. & Peñuelas, J. Variance in biomass-allocation fractions is explained by distribution in European trees. New Phytol. 222, 1352–1363 (2019).

    Article  PubMed  Google Scholar 

  31. Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).

    Article  CAS  PubMed  Google Scholar 

  33. Whittaker, R. H. Classification of natural communities. Bot. Rev. 28, 1–239 (1962).

    Article  Google Scholar 

  34. McDonald, R. et al. Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biol. Conserv. 126, 24–40 (2005).

    Article  Google Scholar 

  35. von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 2013).

  36. Cardillo, M. Latitude and rates of diversifcation in birds and butterfies. Proc. R. Soc. Lond. B 266, 1221–1225 (1999).

    Article  Google Scholar 

  37. Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article  PubMed  Google Scholar 

  38. Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  PubMed  Google Scholar 

  39. Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).

    Article  CAS  Google Scholar 

  40. Crane, P. & Scott, L. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144 (1993).

    Article  Google Scholar 

  42. Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    Article  PubMed  Google Scholar 

  45. Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkinson, S., Clephan, A. L. & Davies, W. J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 126, 1566–1578 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brodribb, T. J. & Holbrook, N. M. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol. 162, 663–670 (2004).

    Article  PubMed  Google Scholar 

  48. Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).

    Article  Google Scholar 

  49. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article  Google Scholar 

  50. Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).

    Article  Google Scholar 

  51. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Basso, B., Martinez-Feria, R. A., Rill, L. & Ritchie, J. T. Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun. 12, 1476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  54. Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J. Big data of tree species distributions: how big and how good? For. Ecosyst. 4, 30 (2017).

    Article  Google Scholar 

  55. Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).

    Article  Google Scholar 

  56. Mendez, C. Spatial autocorrelation analysis in R. R Studio/RPubs. https://rpubs.com/quarcs-lab/spatial-autocorrelation (2020).

  57. Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).

  58. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  59. Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).

    Article  Google Scholar 

  60. Fernández-Martínez, M. et al. The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).

    Article  Google Scholar 

  61. Bartoń, K. MuMIn: multi-model inference. R package v.1.10.1. (2013).

  62. F. Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

T.K. thanks the Edith and Nathan Goldenberg Career Development Chair; Mary and Tom Beck-Canadian Center for Alternative Energy Research; Larson Charitable Foundation New Scientist Fund; Yotam Project; Dana and Yossie Hollander; the Estate of Emile Mimran; and the Estate of Helen Nichunsky. D.L. was supported by the Sustainability and Energy Research Initiative PhD grant. M.F.M. and J.P. were supported by grants PID2019-110521GB-I00 and TED2021-132627B-I00 funded by Spain, Ministry for Science and Innovation (MCIN), AEI/10.13039/501100011033 and the NextGeneration EU/PRTR (Recovery, Transformation and Resilience Plan). M.F.M. was supported by a postdoctoral fellowship from ‘la Caixa’ Foundation (ID 100010434), code: LCF/BQ/PI21/11830010.

Author information

Authors and Affiliations

Authors

Contributions

D.L., J.B. and T.K. designed the research. D.L. performed the research and analysed the data. M.F.M., J.P., T.K., J.B. and S.L.-L. provided scientific advice. M.F.M. and J.B. advised on statistical aspects. D.L. wrote the paper with special contributions from J.P., J.B., M.F.M. and T.K.

Corresponding author

Correspondence to David Lerner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Giacomo Puglielli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Figs. 1–10.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, D., Martínez, M.F., Livne-Luzon, S. et al. A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity. Nat. Plants 9, 544–553 (2023). https://doi.org/10.1038/s41477-023-01369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01369-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing