Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual specificity and target gene selection by the MADS-domain protein FRUITFULL

Abstract

How transcription factors attain their target gene specificity and how this specificity may be modulated, acquiring different regulatory functions through the development of plant tissues, is an open question. Here we characterized different regulatory roles of the MADS-domain transcription factor FRUITFULL (FUL) in flower development and mechanisms modulating its activity. We found that the dual role of FUL in regulating floral transition and pistil development is associated with its different in vivo patterns of DNA binding in both tissues. Characterization of FUL protein complexes by liquid chromatography–tandem mass spectrometry and SELEX-seq experiments shows that aspects of tissue-specific target site selection can be predicted by tissue-specific variation in the composition of FUL protein complexes with different DNA binding specificities, without considering the chromatin status of the target region. This suggests a role for dynamic changes in FUL TF complex composition in reshaping the regulatory functions of FUL during flower development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue-specific gene regulation by FUL.
Fig. 2: Tissue-specific DNA binding patterns of FUL.
Fig. 3: In planta FUL protein interactions.
Fig. 4: DNA binding specificity of FUL dimers.
Fig. 5: Prediction of in vivo FUL DNA binding.

Similar content being viewed by others

Data availability

The RNA-seq, ChIP–seq and SELEX-seq data have been deposited in the GEO database under accession numbers GSE194055, GSE108455 and GSE199643, respectively. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD037091.

Code availability

Custom scripts will be provided upon request.

References

  1. Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228–3240.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pawlak, M. et al. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res. 29, 506–519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smaczniak, C., Muiño, J. M., Chen, D., Angenent, G. C. & Kaufmann, K. Differences in DNA binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell 29, 1822–1835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smaczniak, C., Immink, R. G. H., Angenent, G. C. & Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081–3098 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz-Sommer, Z. et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, H. et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81–94 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. de Folter, S. et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17, 1424–1433 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Folter, Sde & Angenent, G. C. trans meets cis in MADS science. Trends Plant Sci. 11, 224–231 (2006).

    Article  PubMed  Google Scholar 

  12. Theißen, G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85 (2001).

    Article  PubMed  Google Scholar 

  13. Airoldi, C. A., Bergonzi, S. & Davies, B. Single amino acid change alters the ability to specify male or female organ identity. Proc. Natl Acad. Sci. USA 107, 18898–18902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Que, K. et al. Regulatory switch enforced by basic helix–loop–helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc. Natl Acad. Sci. USA 109, E2091–E2097 (2012).

    Google Scholar 

  15. Camille, S. et al. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343, 645–648 (2014).

    Article  Google Scholar 

  16. Lai, X. et al. The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat. Commun. 12, 4760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bemer, M. et al. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J. Exp. Bot. 68, 3391–3403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mandel, M. A. & Yanofsky, M. F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7, 1763–1771 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hempel, F. D. et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Balanzà, V., Martínez-Fernández, I. & Ferrándiz, C. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J. Exp. Bot. 65, 1193–1203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Balanzà, V. et al. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat. Commun. 9, 565 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F. & Ferrándiz, C. Inflorescence meristem fate is dependent on seed development and FRUITFULL in Arabidopsis thaliana. Front. Plant Sci. 10, 1622 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000).

    Article  PubMed  Google Scholar 

  25. Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Roeder, A. H. K., Ferrándiz, C. & Yanofsky, M. F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 13, 1630–1635 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Gu, Q., Ferrandiz, C., Yanofsky, M. F. & Martienssen, R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Di Marzo, M. et al. SEEDSTICK controls Arabidopsis fruit size by regulating cytokinin levels and FRUITFULL. Cell Rep. 30, 2846–2857.e3 (2020).

    Article  PubMed  Google Scholar 

  30. José Ripoll, J. et al. microRNA regulation of fruit growth. Nat. Plants 1, 15036 (2015).

    Article  PubMed  Google Scholar 

  31. Smaczniak, C. et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA 109, 1560–1565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sudre, D. et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J. Exp. Bot. 64, 2665–2688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A. & Perez-Amador, M. A. A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol. 154, 163–172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marsch-Martínez, N. & de Folter, S. Hormonal control of the development of the gynoecium. Curr. Opin. Plant Biol. 29, 104–114 (2016).

    Article  PubMed  Google Scholar 

  36. Kashkan, I. et al. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. N. Phytol. 233, 329–343 (2022).

    Article  CAS  Google Scholar 

  37. Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J. L. & Meyerowitz, E. M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2, e117 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Urbanus, S. L. et al. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 9, 5 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muiño, J. M., Kaufmann, K., van Ham, R. C. H. J., Angenent, G. C. & Krajewski, P. ChIP–seq analysis in R (CSAR): an R package for the statistical detection of protein-bound genomic regions. Plant Methods 7, 11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, R56 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pajoro, A. et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15, R41 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Akiva, S.-K. et al. The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proc. Natl Acad. Sci. USA 116, 16127–16136 (2019).

    Article  Google Scholar 

  44. van Gelderen, K., van Rongen, M., Liu, A., Otten, A. & Offringa, R. An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Mol. Plant 9, 857–869 (2016).

    Article  PubMed  Google Scholar 

  45. Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Aichinger, E. et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet. 5, e1000605 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, G. et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J. 78, 706–714 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi, N. et al. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nat. Commun. 9, 5290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nuceic Acids Res. https://doi.org/10.1093/nar/gkv416 (2015).

  51. Muiño, J. M., Smaczniak, C., Angenent, G. C., Kaufmann, K. & Van Dijk, A. D. J. Structural determinants of DNA recognition by plant MADS-domain transcription factors. Nucleic Acids Res. 42, 2138–2146 (2014).

    Article  PubMed  Google Scholar 

  52. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eeckhoute, J., Métivier, R. & Salbert, G. Defining specificity of transcription factor regulatory activities. J. Cell Sci. 122, 4027–4034 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Jana, T., Brodsky, S. & Barkai, N. Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet. 37, 421–432 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Immink, R. G. H. et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10, R24 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gregis, V., Sessa, A., Dorca-Fornell, C. & Kater, M. M. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60, 626–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Alvarez-Buylla, E. R. et al. Flower development. Arab. B. 8, e0127 (2010).

    Article  Google Scholar 

  59. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Van Mourik, H., Muiño, J. M., Pajoro, A., Angenent, G. C. & Kaufmann, K. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP–seq: experimental protocol and computational analysis. Methods Mol. Biol. 1284, 93–121 (2015).

    Article  PubMed  Google Scholar 

  64. Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP–seq) or hybridization to whole genome arrays (ChIP–ChIP). Nat. Protoc. 5, 457–472 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Schijlen and B. te Lintel Hekkert for generating the HiSeq 2000 data, and M. Busscher for assistance in the laboratory. We thank A. Pajoro for advice on ChIP–seq experiments, and A. Jolma and J. Taipale for providing barcoded single-stranded DNA. This work was supported by an NWO-VIDI grant to K.K., a DFG grant (407463262) to J.M.M. and financial support of China Scholarship Council (CSC201906910064) to P.C.

Author information

Authors and Affiliations

Authors

Contributions

H.v.M., J.M.M., G.C.A. and K.K. jointly conceived and designed the study. P.C. and J.M.M. performed the computational analysis. H.v.M., P.C., C.S., M.B. and S.B. performed experiments. H.v.M., P.C. and J.M.M. wrote the manuscripts with input from all authors.

Corresponding author

Correspondence to Jose M. Muino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Reporting Summary

Supplementary Table

Supplementary Table 1. Summary of the sequenced and mapped reads; differentially expressed genes (ful versus WT) analysis by DESeq2 in inflorescence meristems and pistils. Supplementary Table 2. Results of the Biological Process GO enrichment analysis for different group of DEGs or targets. Supplementary Table 3. Summary of mapped reads; lists of FUL DNA binding sites detect by CSAR in IM and pistils (IP versus control); list of FUL DNA binding sites with a quantitative difference detected by DESeq2 between IM versus pistils (IP IM versus IP pistils). Supplementary Table 4. Complete IP LC–MS/MS analysis for FUL TF in IM versus pistils. Supplementary Table 5. Summary of SELEX sequencing result; quantile normalized DNA binding specificity based on SELEX-seq. Supplementary Table 6. Combined analysis of ChIP–seq and SELEX-seq. Supplementary Table 7. Primer and oligo sequences used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Mourik, H., Chen, P., Smaczniak, C. et al. Dual specificity and target gene selection by the MADS-domain protein FRUITFULL. Nat. Plants 9, 473–485 (2023). https://doi.org/10.1038/s41477-023-01351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01351-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing