Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering the plastid and mitochondrial genomes of flowering plants

Abstract

Engineering the plastid genome based on homologous recombination is well developed in a few model species. Homologous recombination is also the rule in mitochondria, but transformation of the mitochondrial genome has not been realized in the absence of selective markers. The application of transcription activator-like (TAL) effector-based tools brought about a dramatic change because they can be deployed from nuclear genes and targeted to plastids or mitochondria by an N-terminal targeting sequence. Recognition of the target site in the organellar genomes is ensured by the modular assembly of TALE repeats. In this paper, I review the applications of TAL effector nucleases and TAL effector cytidine deaminases for gene deletion, base editing and mutagenesis in plastids and mitochondria. I also review emerging technologies such as post-transcriptional RNA modification to regulate gene expression, Agrobacterium- and nanoparticle-mediated organellar genome transformation, and self-replicating organellar vectors as production platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering the plastid genome based on homologous recombination.
Fig. 2: Lack of plastid-targeted homomeric ACC2 function makes plastid transformation efficient in Arabidopsis.
Fig. 3: The engineered PPR10 RNA binding protein and its cognate binding site for regulating gene expression in potato amyloplasts.
Fig. 4: TAL effectors for organellar genome engineering in plants.
Fig. 5: Expression of TAL effectors in the nucleus enables modification of organelle genomes.

Similar content being viewed by others

References

  1. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Gehrke, F., Schindele, A. & Puchta, H. Non-homologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering. Plant Physiol. 188, 1769–1779 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. He, Y., Mudgett, M. & Zhao, Y. Advances in gene editing without residual transgenes in plants. Plant Physiol. 188, 1757–1761 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Gurdon, C., Svab, Z., Feng, Y., Kumar, D. & Maliga, P. Cell-to-cell movement of mitochondria in plants. Proc. Natl Acad. Sci. USA 113, 3395–3400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanchez-Puerta, M. V., Zubko, M. K. & Palmer, J. D. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. New Phytol. 206, 381–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Kwon, T., Huq, E. & Herrin, D. L. Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of Arabidopsis. Proc. Natl Acad. Sci. USA 107, 13954–13959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kazama, T. et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat. Plants 5, 722–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Arimura, S. Effects of mitoTALENs-directed double-strand breaks on plant mitochondrial genomes comment. Genes https://doi.org/10.3390/genes12020153 (2021).

  9. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci. USA 87, 8526–8530 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 66, 211–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Maliga, P. in Genomics of Chloroplasts and Mitochondria Vol. 35 (eds Bock, R. & Knoop, V.) 393–414 (Springer, 2012).

  12. Klaus, S. M. J., Huang, F. C., Golds, T. J. & Koop, H. U. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat. Biotechnol. 22, 225–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kode, V., Mudd, E. A., Iamtham, S. & Day, A. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J. 46, 901–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Martin Avila, E., Gisby, M. F. & Day, A. Seamless editing of the chloroplast genome in plants. BMC Plant Biol. 16, 168 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maliga, P. & Walker, J. M. (eds) Methods in Molecular Biology 2nd edn Vol. 2317 (Springer, 2021).

  16. Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Wirmer, J. & Westhof, E. Molecular contacts between antibiotics and the 30S ribosomal particle. Methods Enzymol. 415, 180–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, Q., Lutz, K. A. & Maliga, P. Efficient plastid transformation in Arabidopsis. Plant Physiol. 175, 186–193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zubko, M. K. & Day, A. Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J. 15, 265–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Parker, N., Wang, Y. & Meinke, D. Natural variation in sensitivity to a loss of chloroplast translation in Arabidopsis. Plant Physiol. 166, 2013–2027 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yu, Q., LaManna, L., Kelly, M. E., Lutz, K. A. & Maliga, P. New tools for engineering the Arabidopsis plastid genome. Plant Physiol. 181, 394–398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruf, S. et al. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nat. Plants 5, 282–289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silhavy, D. & Maliga, P. Mapping of the promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr. Genet. 33, 340–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Khan, M. S. & Maliga, P. Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat. Biotechnol. 17, 910–915 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S. M. et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol. Cells 21, 401–410 (2006).

    CAS  PubMed  Google Scholar 

  26. Li, R. Q. et al. High-efficiency plastome base editing in rice with TAL cytosine deaminase. Mol. Plant 14, 1412–1414 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Prikryl, J., Rojas, M., Schuster, G. & Barkan, A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc. Natl Acad. Sci. USA 108, 415–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Pfalz, J., Bayraktar, O. A., Prikryl, J. & Barkan, A. Site-specific binding of a PPR protein defines and stabilizes 5’ and 3’ mRNA termini in chloroplasts. EMBO J. 28, 2042–2052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, Q., Barkan, A. & Maliga, P. Engineered RNA-binding protein for transgene activation in non-green plastids. Nat. Plants 5, 486–490 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Barkan, A. et al. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet. 8, e1002910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gordon, K. H. & Waterhouse, P. M. RNAi for insect-proof plants. Nat. Biotechnol. 25, 1231–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, J., Khan, S. A., Heckel, D. G. & Bock, R. Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol. 35, 871–882 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Bally, J. et al. Improved insect-proofing: expressing double-stranded RNA in chloroplasts. Pest Manage. Sci. 74, 1751–1758 (2018).

    Article  CAS  Google Scholar 

  34. Zhang, J. et al. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347, 991–994 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Bally, J. et al. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Front. Plant Sci. 7, 1453 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jin, S., Singh, N. D., Li, L., Zhang, X. & Daniell, H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. Plant Biotechnol. J. 13, 435–446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, M. et al. Efficient control of western flower thrips by plastid-mediated RNA interference. Proc. Natl Acad. Sci. USA (in the press).

  38. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sakuma, T. et al. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci. Rep. 3, 3379 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kang, B. C. et al. Chloroplast and mitochondrial DNA editing in plants. Nat. Plants 7, 899–905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, L. Y. & Gelvin, S. B. T-DNA binary vectors and systems. Plant Physiol. 146, 325–332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Komori, T. et al. Current status of binary vectors and superbinary vectors. Plant Physiol. 145, 1155–1160 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Beurdeley, M. et al. Compact designer TALENs for efficient genome engineering. Nat. Commun. 4, 1762 (2013).

    Article  PubMed  Google Scholar 

  46. Arimura, S. et al. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. Plant J. 104, 1459–1471 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanson, M. R. & Bentolila, S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16, S154–S169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, L. & Liu, Y. G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Omukai, S., Arimura, S., Toriyama, K. & Kazama, T. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. Plant Physiol. 187, 236–246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takatsuka, A., Kazama, T., Arimura, S. & Toriyama, K. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J. https://doi.org/10.1111/tpj.15715 (2022).

  52. Kuwabara, K., Arimura, S., Shirasawa, K. & Ariizumi, T. orf137 triggers cytoplasmic male sterility in tomato. Plant Physiol. 189, 465–468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Forner, J. et al. Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nat. Plants 8, 245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aouida, M., Piatek, M. J., Bangarusamy, D. K. & Mahfouz, M. M. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr. Genet. 60, 61–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Sanders, K. L., Catto, L. E., Bellamy, S. R. & Halford, S. E. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res. 37, 2105–2115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Preuten, T. et al. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64, 948–959 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Giege, P. & Brennicke, A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc. Natl Acad. Sci. USA 96, 15324–15329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakazato, I. et al. Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 119, e2121177119 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Fromm, H., Galun, E. & Edelman, M. A novel site for streptomycin resistance in the ‘530 loop’ of chloroplast 16S ribosomal RNA. Plant Mol. Biol. 12, 499–505 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Nakazato, I. et al. Targeted base editing in the plastid genome of Arabidopsis thaliana. Nat. Plants 7, 906–913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoch, B., Maier, R. M., Appel, K., Igloi, G. L. & Kössel, H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353, 178–180 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Kahlau, S., Aspinall, S., Gray, J. C. & Bock, R. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J. Mol. Evol. 63, 194–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Tillich, M. et al. Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J. 43, 708–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ruwe, H., Castandet, B., Schmitz-Linneweber, C. & Stern, D. B. Arabidopsis chloroplast quantitative editotype. FEBS Lett. 587, 1429–1433 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Small, I. D., Schallenberg-Rudinger, M., Takenaka, M., Mireau, H. & Ostersetzer-Biran, O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101, 1040–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Barkan, A. & Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Sun, T., Bentolila, S. & Hanson, M. R. The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci. 21, 962–973 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Oldenkott, B. et al. One C-to-U RNA editing site and two independently evolved editing factors: testing reciprocal complementation with DYW-type PPR proteins from the moss Physcomitrium (Physcomitrella) patens and the flowering plants Macadamia integrifolia and Arabidopsis. Plant Cell 32, 2997–3018 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Royan, S. et al. A synthetic RNA editing factor edits its target site in chloroplasts and bacteria. Commun. Biol. https://doi.org/10.1038/s42003-021-02062-9 (2021).

  70. Bernath-Levin, K. et al. Cofactor-independent RNA editing by a synthetic S-type PPR protein. Synth. Biol. https://doi.org/10.1093/synbio/ysab034 (2022).

  71. Arroyo-Olarte, R. D., Rodriguez, R. B. & Morales-Rios, E. Genome editing in bacteria: CRISPR-Cas and beyond. Microorganisms https://doi.org/10.3390/microorganisms9040844 (2021).

  72. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tong, Y., Jorgensen, T. S., Whitford, C. M., Weber, T. & Lee, S. Y. A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nat. Commun. 12, 5206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Niazi, A. K. et al. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 13, 548–558 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Tarasenko, T. A. et al. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion 60, 43–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Handa, H. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions. Mitochondrion 8, 15–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Matsuoka, A. & Maliga, P. Progress in reengineering Agrobacterium T-DNA delivery to chloroplasts. Plant Physiol. 186, 215–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Santana, I., Wu, H. H., Hu, P. G. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. https://doi.org/10.1038/s41467-020-15731-w (2020).

  79. Yoshizumi, T., Oikawa, K., Chuah, J. A., Kodama, Y. & Numata, K. Selective gene delivery for integrating exogenous DNA into plastid and mitochondria! genomes using peptide-DNA complexes. Biomacromolecules 19, 1582–1591 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Thagun, C. et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 16, 3506–3521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jakubiec, A. et al. Replicating minichromosomes as a new tool for plastid genome engineering. Nat. Plants 7, 932 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Jensen, P. E. & Scharff, L. B. Engineering of plastids to optimize the production of high-value metabolites and proteins. Curr. Opin. Biotechnol. 59, 8–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Li, S., Chang, L. & Zhang, J. Advancing organelle genome transformation and editing for crop improvement. Plant Commun. 2, 100141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hanson, M. R., Lin, M. T., Carmo-Silva, A. E. & Parry, M. A. Towards engineering carboxysomes into C3 plants. Plant J. 87, 38–50 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin-Avila, E. et al. Modifying plant photosynthesis and growth via simultaneous chloroplast transformation of rubisco large and small subunits. Plant Cell 32, 2898–2916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruf, S., Hermann, M., Berger, I. J., Carrer, H. & Bock, R. Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat. Biotechnol. 19, 870–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Dufourmantel, N. et al. Generation of fertile transplastomic soybean. Plant Mol. Biol. 55, 479–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Cho, S. H., Chung, Y. S., Cho, S. K., Rim, Y. W. & Shin, J. S. Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol. Cells 9, 14–19 (1999).

    CAS  PubMed  Google Scholar 

  90. Zubko, M. K., Zubko, E. I., van Zuilen, K., Mayer, P. & Day, A. Stable transformation of petunia plastids. Transgenic Res. 13, 523–530 (2004).

    Article  CAS  Google Scholar 

  91. Kanamoto, H. et al. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15, 205–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Ruhlman, T., Verma, D., Samson, N. & Daniell, H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 152, 2088–2104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Okumura, S. et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res. 15, 637–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, C. W., Lin, C. C., Chen, J. J. & Tseng, M. J. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep. 26, 1733–1744 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. De Marchis, F., Wang, Y., Stevanato, P., Arcioni, S. & Bellucci, M. Genetic transformation of the sugar beet plastome. Transgenic Res. 18, 17–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Valkov, V. T. et al. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5’ and 3’ regulatory sequences. Transgenic Res. 20, 137–151 (2010).

    Article  PubMed  Google Scholar 

  97. Davarpanah, S. J. et al. Stable plastid transformation in Nicotiana benthamiana. J. Plant Biol. 52, 244–250 (2009).

    Article  CAS  Google Scholar 

  98. Boehm, C. R., Ueda, M., Nishimura, Y., Shikanai, T. & Haseloff, J. A cyan fluorescent reporter expressed from the chloroplast genome of Marchantia polymorpha. Plant Cell Physiol. 57, 291–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Lutz, K. A. & Maliga, P. Construction of marker-free transplastomic plants. Curr. Opin. Biotechnol. 18, 107–114 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.M. thanks C. Best for critical reading of the manuscript. Original research cited was supported by Research Grants from the National Science Foundation MCB 1716102 and National Science Foundation IOS 2037155 to P.M., and USDA NIFA Foundational Program Award No. 2014-67013-21600 to A. Barkan and P.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Plants thanks Anil Day, Shin-ichi Arimura and Spencer Whitney for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maliga, P. Engineering the plastid and mitochondrial genomes of flowering plants. Nat. Plants 8, 996–1006 (2022). https://doi.org/10.1038/s41477-022-01227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01227-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing