Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate

Abstract

Climate forcings determine the episodic occurrence of local climate anomalies that trigger the occurrence of masting events (massive, synchronized and intermittent seed production by perennial plants). This suggests some kind of phase-locking of the reproductive cycles of individual plants to the climatological cycle, thus further reinforcing reproductive synchrony and the Moran effect. We propose a dendrochronological approach to filter out the long-term direct effects of climate on tree radial growth and temporal reproductive effort by sex by using actual trees as climatic controls to reconstruct masting events in Araucaria araucana, a long-lived dioecious masting conifer. In this way, we developed a multi-century-long tree masting reconstruction for South America using female–male radial growth determined by differences in timing and magnitude of the reproductive effort between sexes. We provide evidence for a regional synchronizing mechanism of masting which is drought induced by strong cold La Niña phases of El Niño/Southern Oscillation (ENSO) amplified by the positive phases of the Southern Annular Mode (SAM) that activate both female and male cone bud formation during year −2 before seed fall; that is, a long-term phase-locking between the ENSO cycle and the reproductive cycle modulated by the strength of SAM. In addition, our regional index of masting frequency showed its maximum during the late twentieth century relative to the previous centuries, suggesting that the species is currently at its maximum masting frequency concurrent with a period of enhanced temperature and drought conditions in Patagonia, probably driven by the positive phase of the SAM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-year long phenology of male and female cones before seed dispersal and seedling establishment in A. araucana.
Fig. 2: Periodicity of masting events along the reconstructions of each site.
Fig. 3: Regional changes in masting periodicity in relation to the Southern Annular Mode (SAM).
Fig. 4: Relationship between composite masting events and climate forcing (El Niño Southern Oscillation (ENSO) and Southern Annular Mode (SAM) indexes and regional hydroclimate variability (Neuquén river streamflow) based on superposed epoch analyses (SEA).
Fig. 5: Pacific sea surface temperature (SST) anomalies associated with masting events.
Fig. 6: Spatial association between the reconstructed (nc) masting series and climate indexes.
Fig. 7: Spectral properties of the regional masting reconstruction (nc) compared with climate forcings (ENSO and SAM) and Neuquén streamflow reconstruction.

Similar content being viewed by others

Data availability

The tree-ring data that support the findings of this study are openly available in the National Centers for Environmental Information of NOAA/World Data Service for Paleoclimatology archives at https://www.ncdc.noaa.gov/data-access/paleoclimatology-data with the following reference numbers based on the corresponding sampled site: HAC (https://doi.org/10.25921/1dst-hz36), PAR (https://doi.org/10.25921/tqva-s673) and RAH (https://doi.org/10.25921/hsg7-ak15). The regional seed gathering record, cone production (number per tree) register and standardized (mean = 0 and s.d. = 1) series for the period 1988–2014 are available in Supplementary Table 5.

References

  1. Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).

    Article  Google Scholar 

  3. Silvertown, J. W. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14, 235–250 (1980).

    Article  Google Scholar 

  4. Koenig, W. D. Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288 (2002).

    Article  Google Scholar 

  5. Moran, P. A. P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).

    Article  Google Scholar 

  6. Ranta, E., Veijo, K. & Lindströom, J. Spatially autocorrelated disturbances and patterns in population synchrony. Proc. R. Soc. Lond. B 266, 1851–1856 (1999).

    Article  Google Scholar 

  7. Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).

    Article  Google Scholar 

  8. Sanguinetti, J. Producción y Predación de Semillas, Efectos de Corto y Largo Plazo Sobre el Reclutamiento de Plántulas. Caso de Estudio: Araucaria araucana (Universidad Nacional del Comahue, 2008).

  9. Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).

    Article  Google Scholar 

  10. Fletcher, M.-S. Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol. 216, 527–533 (2015).

    Article  Google Scholar 

  11. Koenig, W. D. & Knops, J. M. H. Scale of mast-seeding and tree-ring growth. Nature 396, 225 (1998).

    Article  CAS  Google Scholar 

  12. Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hadad, M. A., Roig, F. A., Arco Molina, J. G. & Hacket-Pain, A. Growth of male and female Araucaria araucana trees respond differently to regional mast events, creating sex-specific patterns in their tree-ring chronologies. Ecol. Indic. 122, 107245 (2021).

    Article  Google Scholar 

  14. Thompson, D. W. J., Wallace, J. M. & Hegerl, G. C. Annular modes in the extratropical circulation. Part II: trends. J. Clim. 13, 1018–1036 (2000).

    Article  Google Scholar 

  15. Holz, A., Kitzberger, T., Paritsis, J. & Veblen, T. T. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3, 1–25 (2012).

    Article  Google Scholar 

  16. Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildland Fire 22, 194–206 (2013).

    Article  Google Scholar 

  17. Mundo, I. A., Roig Juñent, F. A., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees-Struct. Funct. 26, 443–458 (2012).

    Article  Google Scholar 

  18. Veblen, T. T., Kitzberger, T., Villalba, R. & Donnegan, J. Fire history in Northern Patagonia: the roles of humans and climatic variation. Ecol. Monogr. 69, 47–67 (1999).

    Article  Google Scholar 

  19. Sanguinetti, J. & Kitzberger, T. Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana. Austral Ecol. 33, 78–87 (2008).

    Article  Google Scholar 

  20. Wigley, T. M. L., Briffa, K. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).

    Article  Google Scholar 

  21. Swetnam, T. W. & Lynch, A. M. Multicentury, regional-scale patterns of Western Spruce budworm outbreaks. Ecol. Monogr. 63, 399–424 (1993).

    Article  Google Scholar 

  22. Kitzberger, T., Veblen, T. T. & Villalba, R. Tectonic influences on tree growth in northern Patagonia, Argentina: the roles of substrate stability and climatic variation. Can. J. Res. 25, 1684–1696 (1995).

    Article  Google Scholar 

  23. Mundo, I. A. et al. Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees Struct. Funct. 24, 561–570 (2010).

    Article  Google Scholar 

  24. Rozas, V. et al. Climatic cues for secondary growth and cone production are sex-dependent in the long-lived dioecious conifer Araucaria araucana. Agric. Meteorol. 274, 132–143 (2019).

    Article  Google Scholar 

  25. Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sanguinetti, J. & Kitzberger, T. Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biol. Invasions 12, 689–706 (2010).

    Article  Google Scholar 

  27. Sanguinetti, J. & Kitzberger, T. Efectos de la producción de semillas y de la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana. Rev. Chil. Hist. Nat. 82, 319–335 (2009).

    Article  Google Scholar 

  28. Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).

    Article  PubMed  Google Scholar 

  29. Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R. & Mohren, G. M. J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 16, 89–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J. Clim. 11, 3128–3147 (1998).

    Article  Google Scholar 

  32. Kitzberger, T., Swetnam, T. W. & Veblen, T. T. Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Glob. Ecol. Biogeogr. 10, 315–326 (2001).

    Article  Google Scholar 

  33. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  34. Silvestri, G. E. & Vera, C. S. Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30, 2115 (2003).

    Article  Google Scholar 

  35. Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Article  Google Scholar 

  36. Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).

    Google Scholar 

  37. Drobyshev, I., Niklasson, M., Mazerolle, M. J. & Bergeron, Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric. Meteorol. 192–193, 9–17 (2014).

    Article  Google Scholar 

  38. Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The North Atlantic Oscillation synchronises fruit production in western European forests. Ecography 40, 864–874 (2017).

    Article  Google Scholar 

  39. Ascoli, D. et al. Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology 98, 1473 (2017).

    Article  PubMed  Google Scholar 

  40. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article  CAS  Google Scholar 

  41. Jacques-Coper, M., Brönnimann, S., Martius, O., Vera, C. & Cerne, B. Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int. J. Climatol. 36, 1359–1374 (2016).

    Article  Google Scholar 

  42. Estudio de la Variabilidad Climáticas en Chile para el Siglo XXI (CONAMA, 2006).

  43. Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).

    Article  Google Scholar 

  44. Tortorelli, L. A. La explotación racional de los bosques de Araucaria de Neuquén. Su importancia económica. Servir (separata) VI, 1–74 (1942).

  45. Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A. & Villalba, R. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S) 120–155 (Melbourne Univ. Press, 1995).

  46. Lara, A. et al. Mapeo de la Ecoregión de los Bosques Valdivianos de Argentina y Chile, en escala 1:500.000 (Fundación Vida Silvestre Aregentina, 1999).

  47. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  48. Cook, E. R., Briffa, K., Shiyatov, S. & Mazepa, V. in Methods of Dendrochronology—Applications in the Environmental Sciences (eds Cook, E. & Kairiukstis, L. A.) 104–132 (Kluwer Academic Publishers, 1990).

  49. Yamaguchi, D. K. A simple method for cross-dating increment cores from living trees. Can. J. Res. 21, 414–416 (1991).

    Article  Google Scholar 

  50. Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).

    Google Scholar 

  51. Visser, H. Note on the relation between ring widths and basal area increments. Forest Sci. 41, 297–304 (1995).

  52. Pedersen, B. S. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79, 79–93 (1998).

    Article  Google Scholar 

  53. Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (University of Arizona, School of Renewable Natural Resources, 1985).

  54. Melvin, T. M., Briffa, K. R., Nicolussi, K. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).

    Article  Google Scholar 

  55. Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 9, 216–227 (1999).

    Article  Google Scholar 

  56. Battipaglia, G. et al. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest. PLoS ONE 10, e0120962 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Blasing, T. J., Solomon, A. M. & Duvick, D. N. Response function revisited. Tree-Ring Bull. 44, 1–15 (1984).

    Google Scholar 

  58. Sanguinetti, J. Producción de semillas de Araucaria araucana (Molina) K. Koch durante 15 años en diferentes poblaciones del Parque Nacional Lanín (Neuquén-Argentina). Ecol. Austral 24, 265–275 (2014).

    Article  Google Scholar 

  59. Ficha de Valorización de Resultados. Proyecto Producción, Técnicas de Poscosecha y Desarrollo de Productos a partir del Piñón (FIA, 2011).

  60. Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).

    Article  Google Scholar 

  61. Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).

    Article  CAS  Google Scholar 

  62. Grissino-Mayer, H. D. Tree-ring Reconstructions of Climate and Fire at El Malpais National Monument, New Mexico (Univ. of Arizona, 1995).

  63. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

  64. Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    Article  Google Scholar 

  65. Gouhier, T., Grinsted, A. & Simko, V. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. R package version 0.20.19 https://github.com/tgouhier/biwavelet (2019).

  66. Mundo, I. A. Historia de incendios en bosques de Araucaria araucana (Molina) K. Koch de Argentina a través de un análisis dendroecológico (Universidad Nacional de La Plata, 2011).

  67. Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating Central Equatorial Pacific SST variability over the past millennium. Part I: methodology and validation. J. Clim. 26, 2302–2328 (2013).

    Article  Google Scholar 

  68. Mundo, I. A. et al. Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina. Clim. Past 8, 815–829 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the Agencia Nacional Promoción de Ciencia y Tecnología of Argentina (PICT 2012-1891), the BNP Paribas Foundation (THEMES project) and the National Science Foundation (grant no. 1832483). I.A.M. was also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy—EXC 2150–390870439. I.A.M. joined the EXC 2150 at Kiel University, Germany (November 2020–January 2021) as a guest chair and wrote the final version of this article during that time. We thank the Administración de Parques Nacionales, Dirección Provincial de Bosques of Neuquén province and the owner of Rahue site for sampling permissions. We are grateful to E. Barrio, A. Ripalta and D. Palazzini for research assistance. We thank T. T. Veblen for comments and suggestions on the final version of this manuscript. I.A.M. dedicates this manuscript to the memory of J. L. Frangi (1947–2021), former professor at the Universidad Nacional de La Plata and one of the great promoters of ecology in Argentina.

Author information

Authors and Affiliations

Authors

Contributions

I.A.M., J.S. and T.K. planned and designed the research. I.A.M. and J.S. conducted fieldwork. All authors analysed data. I.A.M. and T.K. took the lead in the writing and contributed equally to the overall manuscript. All authors provided critical feedback, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ignacio A. Mundo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Vicente Rozas, Jim Speer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–6, Notes 1 and 2 and Methods 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundo, I.A., Sanguinetti, J. & Kitzberger, T. Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate. Nat. Plants 7, 1560–1570 (2021). https://doi.org/10.1038/s41477-021-01038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01038-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing