Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation

Abstract

Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interkingdom multiomics demonstrates causal plant–microbial interactions in the rhizosphere during root development.
Fig. 2: Host transcriptome and rhizosphere microbiome interactions affecting maize performance.
Fig. 3: Changes in rhizosphere microbiota conditioned by plant-derived flavones promote maize growth and nitrogen uptake in nitrogen-poor soil.
Fig. 4: Growth performance of mutants with lateral root defects is associated with flavone-conditioned rhizosphere microbiota.
Fig. 5: Flavonoid-dependent Oxalobacteraceae promote plant growth and nitrogen acquisition by triggering developmental feedback on lateral root formation in nitrogen-poor soil.
Fig. 6: Proposed model for flavone-dependent, microbiota-mediated lateral root formation and plant performance.

Similar content being viewed by others

Data availability

All raw plant RNA-seq data, rhizosphere bacterial 16S and fungal ITS and shotgun metagenomic sequencing data reported in this paper were deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession no. SRP263360. RNA-seq reads were mapped to the maize reference genome sequence v.4 (https://www.maizegdb.org/genome/genome_assembly/Zm-B73-REFERENCE-GRAMENE-4.0). The SSUrRNA database from SILVA database (release 128, 2016, https://www.arb-silva.de/) and UNITE database (v.7.2, 2017, https://unite.ut.ee/) were used for analysis of bacterial 16S and fungal ITS sequences, respectively. The databases AgriGO (v.2.0, 2017, http://systemsbiology.cau.edu.cn/agriGOv2/) and REVIGO (2017, http://revigo.irb.hr/) were used for functional GO analysis of maize genes. Protein–protein interaction networks of enriched gene modules were generated by the database STRING (v.10.5, https://version-10-5.string-db.org/). Functional annotation of shotgun metagenomic sequencing was performed using COG databases (release clovr-1.0-RC9). We deposited customized scripts on the association of gene modules with microbial taxonomic traits in the following GitHub repository: https://github.com/PengYuMaize/Yu2021NaturePlants. Source data are provided with this paper.

References

  1. Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304 (2002).

    Article  PubMed  Google Scholar 

  2. Kenrick, P. & Strullu-Derrien, C. The origin and early evolution of roots. Plant Physiol. 166, 570–580 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Marschner, P. in Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 369–388 (Academic Press, 2012).

  4. Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwak, M. J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).

    Google Scholar 

  8. Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    Article  CAS  Google Scholar 

  10. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schreiter, S. et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 5, 144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Veach, A. M. et al. Rhizosphere microbiomes diverge among Populus trichocarpa plant–host genotypes and chemotypes, but it depends on soil origin. Microbiome 7, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ofek-Lalzar, M. et al. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5, 4950 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gruber, B., Giehl, R., Friedel, S. & von Wirén, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garrido-Oter, R. et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155–167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verbon, E. H. & Liberman, L. M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci. 21, 218–229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hochholdinger, F., Yu, P. & Marcon, C. Genetic control of root system development in maize. Trends Plant Sci. 23, 79–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Hake, S. & Ross-Ibarra, J. The natural history of model organisms: genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 4, e05861 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  21. Yu, P., Gutjahr, C., Li, C. & Hochholdinger, F. Genetic control of lateral root formation in cereals. Trends Plant Sci. 21, 951–961 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Tai, H. et al. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). J. Exp. Bot. 67, 1123–1135 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yu, P., Eggert, K., von Wirén, N., Li, C. & Hochholdinger, F. Cell type-specific gene expression analyses by RNA sequencing reveal local high nitrate-triggered lateral root initiation in shoot-borne roots of maize by modulating auxin-related cell cycle regulation. Plant Physiol. 169, 690–704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, P. et al. Root type-specific reprogramming of maize pericycle transcriptomes by local high nitrate results in disparate lateral root branching patterns. Plant Physiol. 170, 1783–1798 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szoboszlay, M. et al. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol. Biochem. 80, 34–44 (2015).

    Article  CAS  Google Scholar 

  26. Gutjahr, C. et al. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proc. Natl Acad. Sci. USA 112, 6754–6759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, P. et al. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. New Phytol. 217, 1240–1253 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Cotton, T. A. et al. Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J. 13, 1647–1658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cesco, S., Neumann, G., Tomasi, N., Pinton, R. & Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329, 1–25 (2010).

    Article  CAS  Google Scholar 

  33. Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kudjordjie, E. N., Sapkota, R., Steffensen, S. K., Fomsgaard, I. S. & Nicolaisen, M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7, 59 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hassan, S. & Mathesius, U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J. Exp. Bot. 63, 3429–3444 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mierziak, J., Kostyn, K. & Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240–16265 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ferreyra, M. L. F. et al. The identification of maize and Arabidopsis type I flavone synthases links flavones with hormones and biotic interactions. Plant Physiol. 169, 1090–1107 (2015).

    Article  CAS  Google Scholar 

  38. Eloy, N. B. et al. Silencing CHALCONE SYNTHASE in maize impedes the incorporation of tricin into lignin and increases lignin content. Plant Physiol. 173, 998–1016 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Righini, S. et al. Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage. Plant Cell Environ. 42, 495–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Wasson, A. P., Pellerone, F. I. & Mathesius, U. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617–1629 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Subramanian, S., Stacey, G. & Yu, O. Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12, 282–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Oldroyd, G. E. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368, eaba0196 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, J., Subramanian, S., Stacey, G. & Yu, O. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57, 171–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Article  PubMed  CAS  Google Scholar 

  45. Barberon, M. The endodermis as a checkpoint for nutrients. New Phytol. 213, 1604–1610 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Duan, F., Giehl, R. F. H., Geldner, N., Salt, D. E. & von Wirén, N. Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots. PLoS Biol. 16, e2006024 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Giehl, R. F. & von Wirén, N. Root nutrient foraging. Plant Physiol. 166, 509–517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jia, Z., Giehl, R. F. H., Meyer, R. C., Altmann, T. & von Wirén, N. Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat. Commun. 10, 2378 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Postma, J. A., Dathe, A. & Lynch, J. P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol. 166, 590–602 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhan, A. & Lynch, J. P. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. J. Exp. Bot. 66, 2055–2065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Voges, M. J., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beirinckx, S. et al. Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome 8, 54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stelpflug, S. C. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome https://doi.org/10.3835/plantgenome2015.04.0025 (2016).

  59. Ofek, M., Hadar, Y. & Minz, D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS ONE 7, e40117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gutiérrez-Luna, F. M. et al. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51, 75–83 (2010).

    Article  CAS  Google Scholar 

  61. Poitout, A. et al. Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. J. Exp. Bot. 68, 1199–1211 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. López-Bucio, J. et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant Microbe Interact. 20, 207–217 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Finkel, O. M. et al. A single bacterial genus maintains root development in a complex microbiome. Nature 587, 103–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Schiessl, K. et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr. Biol. 29, 3657–3668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soyano, T., Shimoda, Y., Kawaguchi, M. & Hayashi, M. A shared gene drives lateral root development and root nodule symbiosis pathways in lotus. Science 366, 1021–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, F. et al. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell 32, 2855–2877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Romay, M. C. et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14, R55 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Della Vedova, C. B. et al. The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 170, 1989–2002 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bertin, P. & Gallais, A. Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines. I. Agrophysiological results. Maydica 45, 53–68 (2000).

    Google Scholar 

  70. Nelson, D. W. & Sommers, L. E. Determination of total nitrogen in plant material. Agron. J. 65, 109–112 (1973).

    Article  CAS  Google Scholar 

  71. Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article 3 (2004).

    Article  Google Scholar 

  73. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  74. Tian, T. et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122–W129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  78. Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    Article  CAS  Google Scholar 

  79. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  Google Scholar 

  82. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  83. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1 (2008).

    Article  Google Scholar 

  87. Segata, N. & Huttenhower, C. Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS ONE 6, e24704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Faust, K. & Raes, J. CoNet app: inference of biological association networks using Cytoscape. F1000Res. 5, 1519 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Q. et al. Host and microbiome multi-omics integration: applications and methodologies. Biophys. Rev. 11, 55–65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article  CAS  Google Scholar 

  94. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 17 (2005).

  95. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinform. 4, 41 (2003).

    Article  Google Scholar 

  97. Stiehl‐Braun, P. A., Hartmann, A. A., Kandeler, E., Buchmann, N. I. N. A. & Niklaus, P. A. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob. Change Biol. 17, 2629–2639 (2011).

    Article  Google Scholar 

  98. Glickmann, E. & Dessaux, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793–796 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Schulze-Lefert (Max Planck Institute for Plant Breeding Research, Cologne, Germany) for the generous donation of bacterial strains and natural soil for pot experiments. We thank J. Birchler (University of Missouri, Columbia, USA), C. Gardner (United States Department of Agriculture, Ames, USA), P. S. Schnable (Iowa State University, Ames, USA) and T. Wang (Chinese Academy of Agricultural Sciences, Beijing, China) for germplasm contribution. We thank S.-W. Lee (Dong-A University, Busan, Republic of Korea) and J. F. Kim (Yonsei University, Seoul, Republic of Korea) for sharing the methods used for rhizosphere transplantation. We thank C. Gutjahr (Technical University of Munich, Munich, Germany), C. Knief (University of Bonn, Bonn, Germany) and B. Niu (Northeast Forest University of China, Harbin, China) for valuable suggestions on the experiments. We thank the student helpers from C. Zou´s group at China Agricultural University (Beijing, China) for field sample harvesting. We thank A. Glogau (University of Bonn, Bonn, Germany) for nitrogen determination. This work is supported by Deutsche Forschungsgemeinschaft (DFG) grant nos. HO2249/9-3 and HO2249/12-1 (to F.H.) and YU272/1-1; Emmy Noether Programme (no. 444755415) to P.Y.; Germany’s Excellence Strategy (EXC 2070) PhenoRob grant no. 390732324 to G.S.; Bundesministerium für Bildung und Forschung grant no. 031B195C to F.H.; DFG Priority Program (SPP2089) ‘Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions’ grant nos. 403671039 (to F.H. and P.Y.) and 403670038 (to B.S.R.). S.G.’s research is supported by Research Foundation – Flanders – Strategic Basic Research (grant no. 151553). K.T.’s research is supported by the Huazhong Agricultural University Scientific & Technological Self-innovation Foundation, the Max Planck Society and DFG grant no. SPP2125. X.C.’s research is supported by The Changjiang Scholarship, Ministry of Education, China, State Cultivation Base of Eco-agriculture for Southwest Mountainous Land (Southwest University, Chongqing, China) and the National Maize Production System in China (grant no. CARS-02-15).

Author information

Authors and Affiliations

Authors

Contributions

P.Y., K.T., X.C. and F.H. designed the study. P.Y. and X.H. performed field and phytochamber experiments. P.Y., T.T., Z.S., F.P.F. and F.H. analysed transcriptome and microbiome data. P.Y. and V.B. performed shotgun metagenomic sequencing. Y.A.T.M. and N.v.W. performed targeted flavone profiling. X.Z. and B.S.R. performed 14C labelling and imaging analysis. M.D., G.S., Y.A.T.M. and N.v.W. conducted plant nutrient analysis. P.Y., X.H. and M. Baer performed bacterial inoculation experiments. S.B. and S.G. isolated Oxalobacteraceae strains from maize and performed in vivo analysis of bacterial strains and DR5::GUS in Arabidopsis. P.Y., X.H., S.B., B.S.R., G.S., N.v.W., M. Bucher, K.T., S.G., X.C. and F.H. wrote the paper. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xinping Chen or Frank Hochholdinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Corné Pieterse, Klaus Schlaeppi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Supplementary Datasets 1–15 (descriptions are shown individually in Excel sheets).

Supplementary Data 2

Statistical source data for Supplementary Fig. 4.

Supplementary Data 3

Statistical source data for Supplementary Fig. 5.

Supplementary Data 4

Statistical source data for Supplementary Fig. 7.

Supplementary Data 5

Statistical source data for Supplementary Fig. 8.

Supplementary Data 6

Statistical source data for Supplementary Fig. 14.

Supplementary Data 7

Statistical source data for Supplementary Fig. 15.

Supplementary Data 8

Statistical source data for Supplementary Fig. 16.

Supplementary Data 9

Statistical source data for Supplementary Fig. 17.

Supplementary Data 10

Statistical source data for Supplementary Fig. 19.

Supplementary Data 11

Statistical source data for Supplementary Fig. 20.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., He, X., Baer, M. et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481–499 (2021). https://doi.org/10.1038/s41477-021-00897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00897-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research