Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photocatalysis as the ‘master switch’ of photomorphogenesis in early plant development

A Publisher Correction to this article was published on 09 April 2021

This article has been updated

Abstract

Enzymatic photocatalysis is seldom used in biology. Photocatalysis by light-dependent protochlorophyllide oxidoreductase (LPOR)—one of only a few natural light-dependent enzymes—is an exception, and is responsible for the conversion of protochlorophyllide to chlorophyllide in chlorophyll biosynthesis. Photocatalysis by LPOR not only regulates the biosynthesis of the most abundant pigment on Earth but it is also a ‘master switch’ in photomorphogenesis in early plant development. Following illumination, LPOR promotes chlorophyll production, plastid membranes are transformed and the photosynthetic apparatus is established. Given these remarkable, light-induced pigment and morphological changes, the LPOR-catalysed reaction has been extensively studied from catalytic, physiological and plant development perspectives, highlighting vital, and multiple, cellular roles of this intriguing enzyme. Here, we offer a perspective in which the link between LPOR photocatalysis and plant photomorphogenesis is explored. Notable breakthroughs in LPOR structural biology have uncovered the structural–mechanistic basis of photocatalysis. These studies have clarified how photon absorption by the pigment protochlorophyllide—bound in a ternary LPOR–protochlorophyllide–NADPH complex—triggers photocatalysis and a cascade of complex molecular and cellular events that lead to plant morphological changes. Photocatalysis is therefore the master switch responsible for early-stage plant development and ultimately life on Earth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the chlorophyll biosynthesis pathway.
Fig. 2: The role of LPOR in chloroplast development.
Fig. 3: Overview of the structural organization of LPOR.
Fig. 4: Timeline of chemical and structural changes triggered by illumination of LPOR–Pchlide–NADPH complexes.

Change history

References

  1. Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 82, 505–517 (2013).

    Article  PubMed  Google Scholar 

  2. Rudiger, W. Chlorophyll metabolism: from outer space down to the molecular level. Phytochemistry 46, 1151–1167 (1997).

    Article  CAS  Google Scholar 

  3. Masuda, T. & Fujita, Y. Regulation and evolution of chlorophyll metabolism. Photochem. Photobiol. Sci. 7, 1131–1149 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Stenbaek, A. & Jensen, P. E. Redox regulation of chlorophyll biosynthesis. Phytochemistry 71, 853–859 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Mochizuki, N. et al. The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci. 15, 488–498 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Czarnecki, O. & Grimm, B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 63, 1675–1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, P. & Grimm, B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynth. Res. 126, 189–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi, K. & Masuda, T. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front. Plant Sci. 7, 1811 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Armarego-Marriott, T., Sandoval-Ibanez, O. & Kowalewska, L. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. J. Exp. Bot. 71, 1215–1225 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Chidgey, J. W., Jackson, P. J., Dickman, M. J. & Hunter, C. N. PufQ regulates porphyrin flux at the haem/bacteriochlorophyll branchpoint of tetrapyrrole biosynthesis via interactions with ferrochelatase. Mol. Microbiol. 106, 961–975 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, X. et al. Structural insights into the catalytic mechanism of Synechocystis magnesium protoporphyrin IX O-methyltransferase (ChlM). J. Biol. Chem. 289, 25690–25698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richter, A. S., Wang, P. & Grimm, B. Arabidopsis Mg-protoporphyrin IX methyltransferase activity and redox regulation depend on conserved cysteines. Plant Cell Physiol. 57, 519–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Hollingshead, S., Bliss, S., Baker, P. J. & Hunter, C. N. Conserved residues in Ycf54 are required for protochlorophyllide formation in Synechocystis sp. PCC 6803. Biochem. J. 474, 667–681 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, G. E., Canniffe, D. P. & Hunter, C. N. Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc. Natl Acad. Sci. USA 114, 6280–6285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heyes, D. J., Kruk, J. & Hunter, C. N. Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates. Biochem. J. 394, 243–248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hitchcock, A. et al. Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll–protein complex. ACS Synth. Biol. 5, 948–954 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Schoefs, B. & Franck, F. Protochlorophyllide reduction: mechanisms and evolution. Photochem. Photobiol. 78, 543–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Heyes, D. J. & Hunter, C. N. Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem. Sci. 30, 642–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Reinbothe, C. et al. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci. 15, 614–624 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Scrutton, N. S., Groot, M. L. & Heyes, D. J. Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Phys. Chem. Chem. Phys. 14, 8818–8824 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Gabruk, M. & Mysliwa-Kurdziel, B. Light-dependent protochlorophyllide oxidoreductase: phylogeny, regulation, and catalytic properties. Biochemistry 54, 5255–5262 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, J. & Cheng, Q. Origin and evolution of the light-dependent protochlorophyllide oxidase (LPOR) genes. Plant Biol. 6, 537–544 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong, G. A. Greening in the dark: light independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J. Photochem. Photobiol. B 43, 87–100 (1998).

    Article  CAS  Google Scholar 

  25. Vedalankar, P. & Tripathy, B. C. Evolution of light-independent protochlorophyllide oxidoreductase. Protoplasma 256, 293–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Sarma, R. et al. Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47, 13004–13015 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Bröcker, M. J. et al. Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J. Biol. Chem. 285, 27336–27345 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yamamoto, H., Kurumiya, S., Ohashi, R. & Fujita, Y. Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol. 50, 1663–1673 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Kaschner, M. et al. Discovery of the first light dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol. Microbiol. 93, 1066–1078 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Kasalicky, V. et al. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl. Environ. Microbiol. 84, e02116–e02117 (2018).

    Article  PubMed  Google Scholar 

  31. Chernomor, O. et al. Complex evolution of light-dependent protochlorophyllide oxidoreductases in aerobic anoxygenic phototrophs: origin, phylogeny and function. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msaa234 (2020).

  32. Reinbothe, S., Quigley, F., Gray, J., Schemenewitz, A. & Reinbothe, C. Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc. Natl Acad. Sci. USA 101, 2197–2202 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reinbothe, S., Gray, J., Rustgi, S., von Wettstein, D. & Reinbothe, C. Cell growth defect factor 1 is crucial for the plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 5838–5843 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kauss, D., Bischof, S., Steiner, S., Apel, K. & Meskauskiene, R. FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett. 586, 211–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, W. et al. Characterization of ferredoxin-dependent biliverdin reductase PCYA1 reveals the dual function in retrograde bilin biosynthesis and interaction with light-dependent protochlorophyllide oxidoreductase LPOR in Chlamydomonas reinhardtii. Front. Plant Sci. 9, 676 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schottkowski, M., Ratke, J., Oster, U., Nowaczyk, M. & Nickelsen, J. Pitt, a novel tetratricopeptide repeat protein involved in light-dependent chlorophyll biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. Mol. Plant 2, 1289–1297 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hey, D. et al. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol. 174, 1037–1050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, J. H. C. & Kupke, D. W. Some properties of extracted protochlorophyll holochrome. Nature 178, 751–752 (1956).

    Article  CAS  Google Scholar 

  39. Solymosi, K. & Schoefs, B. Etioplast and etiochloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth. Res. 105, 143–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Josse, E.-M. & Halliday, K. J. Skotomorphogenesis: the dark side of light signalling. Curr. Biol. 18, R1144–R1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Adam, Z., Charuvi, D., Tsabari, O., Knopf, R. R. & Reich, Z. Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. Plant Mol. Biol. 76, 221–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Grzyb, J. M., Solymosi, K., Strzalka, K. & Mysliwa-Kurdziel, B. Visualization and characterization of prolamellar bodies with atomic force microscopy. J. Plant Physiol. 170, 1217–1227 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Kowalewska, L., Mazur, R., Suski, S., Garstka, M. & Mostowska, A. Three-dimensional visualization of the tubular-lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis. Plant Cell 28, 875–891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gabruk, M., Mysliwa-Kurdziel, B. & Kruk, J. MGDG, PG and SQDG regulate the activity of light-dependent protochlorophyllide oxidoreductase. Biochem. J. 474, 1307–1320 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Fujii, S., Kobayashi, K., Nagata, N., Masuda, T. & Wada, H. Monogalactosyldiacylglycerol facilitates synthesis of photoactive protochlorophyllide in etioplasts. Plant Physiol. 174, 2183–2198 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fujii, S., Kobayashi, K., Nagata, N., Masuda, T. & Wada, H. Digalactosyldiacylglycerol is essential for organization of the membrane structure in etioplasts. Plant Physiol. 177, 1487–1497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujii, S., Nagata, N., Masuda, T., Wada, H. & Kobayashi, K. Galactolipids are essential for internal membrane transformation during etioplast-to-chloroplast differentiation. Plant Cell Physiol. 60, 1224–1238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aronsson, H., Sundqvist, C. & Dahlin, C. POR hits the road: import and assembly of a plastid protein. Plant Mol. Biol. 51, 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Selstam, E., Schelin, J., Brain, T. & Williams, W. P. The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). Eur. J. Biochem. 269, 2336–2346 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Selstam, E., Brain, A. P. R. & Williams, W. P. The relationship between different spectral forms of the protochlorophyllide oxidoreductase complex and the structural organisation of prolamellar bodies isolated from Zea mays. Photosynth. Res. 108, 47–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Masuda, S. et al. Prolamellar bodies formed by cyanobacterial protochlorophyllide oxidoreductase in Arabidopsis. Plant J. 58, 952–960 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto, H., Kojima-Ando, H., Ohki, K. & Fujita, Y. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana. J. Gen. Appl. Microbiol. 66, 129–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Pribil, M., Labs, M. & Leister, D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955–1972 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Schoefs, B. & Franck, F. The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth. Photosyn. Res. 96, 15–26 (2008).

    Article  CAS  Google Scholar 

  55. Rumak, I. et al. 3-D modelling of chloroplast structure under (Mg2+) magnesium ion treatment. Relationship between thylakoid membrane arrangement and stacking. Biochim. Biophys. Acta 1797, 1736–1748 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Holtorf, H., Reinbothe, S., Reinbothe, C. & Bereza, B. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proc. Natl Acad. Sci. USA 92, 3254–3258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Su, Q., Frick, G., Armstrong, G. & Apel, K. POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol. Biol. 47, 805–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Masuda, T. & Takamiya, K. Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosyn. Res. 81, 1–29 (2004).

    Article  CAS  Google Scholar 

  59. Gabruk, M. & Mysliwa-Kurdziel, B. The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. Biochem. J. 477, 2221–2236 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Buhr, F. et al. Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proc. Natl Acad. Sci. USA 105, 12629–12634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Armstrong, G. A., Apel, K. & Rüdiger, W. Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci. 5, 40–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Yuan, M. et al. Assembly of NADPH:protochlorophyllide oxidoreductase complex is needed for effective greening of barley seedlings. J. Plant Physiol. 169, 1311–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Pattanayak, G. K. & Tripathy, B. C. Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS ONE 6, e26532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhan, W. et al. An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. Plant J. 100, 114–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Boddi, B., Lindsten, A., Ryberg, M. & Sundqvist, C. On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol. Plant. 76, 135–143 (1989).

    Article  Google Scholar 

  66. Schneidewind, J. et al. Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Commun. Biol. 2, 351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang, S. et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature 574, 722–725 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Gabruk, M. et al. Photoactive protochlorophyllide–enzyme complexes reconstituted with PORA, PORB and PORC proteins of A. thaliana: fluorescence and catalytic properties. PLoS ONE 10, e0116990 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gabruk, M. et al. Insight into the oligomeric structure of PORA from A. thaliana. Biochim. Biophys. Acta Proteins Proteom. 1864, 1757–1764 (2016).

    Article  CAS  Google Scholar 

  70. Zhang, S. et al. Dual role of the active site ‘lid’ regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. FEBS J. 288, 175–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Nguyen, H. C., Melo, A. A., Kruk, J., Frost, A. & Gabruk, M. Photocatalytic LPOR forms helical lattices that shape membranes for chlorophyll synthesis. Nat. Plants (in the press).

  72. Aronsson, H., Sundqvist, C. & Dahlin, C. POR-import and membrane association of a key element in chloroplast development. Physiol. Plant. 118, 1–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Heyes, D. J., Menon, B. R. K., Sakuma, M. & Scrutton, N. S. Conformational events during ternary enzyme–substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry 47, 10991–10998 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Heyes, D. J., Hardman, S. J. O., Mansell, D., Gardiner, J. M. & Scrutton, N. S. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase. PLoS ONE 7, e45642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kolossov, V. L., Kopetz, K. J. & Rebeiz, C. A. Chloroplast biogenesis 87: evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a. Photochem. Photobiol. 78, 184–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Sytina, O. A. et al. Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 456, 1001–1004 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Stadler, A. M. et al. Ternary complex formation and photoactivation of a photoenzyme results in altered protein dynamics. J. Phys. Chem. B 123, 7372–7384 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Menon, B. R., Hardman, S. J., Scrutton, N. S. & Heyes, D. J. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). J. Photochem. Photobiol. B 161, 236–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gholami, S. et al. Theoretical model of the protochlorophyllide oxidoreductase from a hierarchy of protocols. J. Phys. Chem. B 122, 7668–7681 (2018).

    Article  PubMed  Google Scholar 

  80. Dong, C. S. et al. Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Proc. Natl Acad. Sci. USA 117, 8455–8461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ho, M. Y., Shen, G., Canniffe, D. P., Zhao, C. & Bryant, D. A. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353, aaf9178 (2016).

    Article  PubMed  Google Scholar 

  82. Aubert, C., Vos, M. H., Mathis, P., Eker, A. P. & Brettel, K. Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 405, 586–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Sorigue, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357, 903–907 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Schmermund, L. et al. Extending the library of light-dependent protochlorophyllide oxidoreductases and their solvent tolerance, stability in light and cofactor flexibility. ChemCatChem 12, 4044–4051 (2020).

    Article  CAS  Google Scholar 

  85. Dietzek, B. et al. Excited-state processes in protochlorophyllide a – a femtosecond time-resolved absorption study. Chem. Phys. Lett. 397, 110–115 (2004).

    Article  CAS  Google Scholar 

  86. Dietzek, B., Kiefer, W., Hermann, G., Popp, J. & Schmitt, M. Solvent effects on the excited-state processes of protochlorophyllide: a femtosecond time-resolved absorption study. J. Phys. Chem. B 110, 4399–4406 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Dietzek, B. et al. The excited-state chemistry of protochlorophyllide a: a time-resolved fluorescence study. ChemPhysChem 7, 1727–1733 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Dietzek, B. et al. Protochlorophyllide a: a comprehensive photophysical picture. ChemPhysChem 10, 144–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Dietzek, B. et al. Dynamics of charge separation in the excited-state chemistry of protochlorophyllide. Chem. Phys. Lett. 492, 157–163 (2010).

    Article  CAS  Google Scholar 

  90. Sytina, O. A. et al. Protochlorophyllide excited-state dynamics in organic solvents studied by time-resolved visible and mid-infrared spectroscopy. J. Phys. Chem. B 114, 4335–4344 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Heyes, D. J. et al. Excited-state properties of protochlorophyllide analogues and implications for light-driven synthesis of chlorophyll. J. Phys. Chem. B 121, 1312–1320 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Brandariz-de-Pedro, G. et al. Direct evidence of an excited-state triplet species upon photoactivation of the chlorophyll precursor protochlorophyllide. J. Phys. Chem. Lett. 8, 1219–81223 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Zhao, G. J. & Han, K. L. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys. J. 94, 38–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Heyes, D. J. et al. Excited state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Angew. Chem. Int. Ed. 54, 1512–1515 (2015).

    Article  CAS  Google Scholar 

  95. Heyes, D. J., Sakuma, M., de Visser, S. & Scrutton, N. S. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 284, 3762–3767 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Heyes, D. J., Sakuma, M. & Scrutton, N. S. Solvent-slaved protein motions accompany proton but not hydride tunneling in light-activated protochlorophyllide oxidoreductase. Angew. Chem. Int. Ed. 48, 3850–3853 (2009).

    Article  CAS  Google Scholar 

  97. Menon, B. R. K., Waltho, J. P., Scrutton, N. S. & Heyes, D. J. Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 284, 18160–18166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Menon, B. R., Davison, P. A., Hunter, C. N., Scrutton, N. S. & Heyes, D. J. Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 285, 2113–2119 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Heyes, D. J., Levy, C., Sakuma, M., Robertson, D. L. & Scrutton, N. S. A twin-track approach has optimized proton and hydride transfer by dynamically coupled tunneling during the evolution of protochlorophyllide oxidoreductase. J. Biol. Chem. 286, 11849–11854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoeven, R., Hardman, S. J. O., Heyes, D. J. & Scrutton, N. S. Cross-species analysis of protein dynamics associated with hydride and proton transfer in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry 55, 903–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Archipowa, N., Kutta, R. J., Heyes, D. J. & Scrutton, N. S. Stepwise hydride transfer in a biological system: insights into the reaction mechanism of the light-dependent protochlorophyllide oxidoreductase. Angew. Chem. Int. Ed. 57, 2682–2686 (2018).

    Article  CAS  Google Scholar 

  102. Heyes, D. J., Ruban, A. V., Wilks, H. M. & Hunter, C. N. Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc. Natl Acad. Sci. USA 99, 11145–11150 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Heyes, D. J., Ruban, A. V. & Hunter, C. N. Protochlorophyllide oxidoreductase: “dark” reactions of a light-driven enzyme. Biochemistry 42, 523–528 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Heyes, D. J. & Hunter, C. N. Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase. Biochemistry 43, 8265–8271 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Heyes, D. J. et al. The first catalytic step of the light driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex. J. Biol. Chem. 281, 26847–26853 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Durin, G. et al. Simultaneous measurements of solvent dynamics and functional kinetics in a light-activated enzyme. Biophys. J. 96, 1902–1910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garrone, A., Archipowa, N., Zipfel, P. F., Hermann, G. & Dietzek, B. Plant protochlorophyllide oxidoreductases A and B: catalytic efficiency and initial reaction steps. J. Biol. Chem. 290, 28530–28539 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Raskin, V. I. & Schwartz, A. The charge-transfer complex between protochlorophyllide and NADPH: an intermediate in protochlorophyllide photoreduction. Photosyn. Res. 74, 181–186 (2002).

    Article  CAS  Google Scholar 

  109. Heyes, D. J., Sakuma, M. & Scrutton, N. S. Laser excitation studies of the product release steps in the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase. J. Biol. Chem. 282, 32015–32020 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Levantino, M., Yorke, B. A., Monteiro, D. C., Cammarata, M. & Pearson, A. R. Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr. Opin. Struct. Biol. 35, 41–48 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.J.H. and N.S.S. conceived and led the writing of the manuscript. S.Z., A.T., L.O.J., S.J.O.H. and S.H. contributed to the writing of specific sections, critical reading of the manuscript and reviewing of appropriate references. S.Z., D.J.H. and A.T. prepared the figures.

Corresponding authors

Correspondence to Derren J. Heyes or Nigel S. Scrutton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Bernhard Grimm, Ulrich Krauss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heyes, D.J., Zhang, S., Taylor, A. et al. Photocatalysis as the ‘master switch’ of photomorphogenesis in early plant development. Nat. Plants 7, 268–276 (2021). https://doi.org/10.1038/s41477-021-00866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00866-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing