Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes

Abstract

Several yield-related traits selected during crop domestication and improvement1,2 are associated with increases in meristem size3, which is controlled by CLE peptide signals in the CLAVATA–WUSCHEL pathway4,5,6,7,8,9,10,11,12,13. Here, we engineered quantitative variation for yield-related traits in maize by making weak promoter alleles of CLE genes, and a null allele of a newly identified partially redundant compensating CLE gene, using CRISPR–Cas9 genome editing. These strategies increased multiple maize grain-yield-related traits, supporting the enormous potential for genomic editing in crop enhancement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mutation of ZmCLE7 and ZmFCP1 promoters by CRISPR–Cas9.
Fig. 2: ZmCLE7 promoter-edited alleles as heterozygotes with a null allele increase IM size.
Fig. 3: ZmCLE7 and ZmFCP1 promoter-edited alleles as heterozygotes with a null allele increase grain-yield-related traits by producing enlarged, non-fasciated ears.
Fig. 4: ZmCLE1E5 CRISPR null alleles enhance meristem size and grain-yield-related traits.

Data availability

The sequences of ZmFCP1 and ZmCLE7 promoter-edited alleles are listed in Supplementary Table 4. The RNA-seq datasets are available from the National Center for Biotechnology Information; the BioProject and SRA accession numbers are PRJNA494874 and SRR12616467SRR12616470. Source data are provided with this paper.

References

  1. 1.

    Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Doebley, J. F. The genetics of maize evolution. Annu. Rev. Genet. 38, 37–59 (2004).

    CAS  PubMed  Google Scholar 

  3. 3.

    Vollbrecht, E. & Schmidt, R. J. in Handbook of Maize: Its Biology (eds Bennetzen, J. L & Hake, S. C.) 13–40 (Springer, 2009).

  4. 4.

    Wu, Q., Xu, F. & Jackson, D. All together now, a magical mystery tour of the maize shoot meristem. Curr. Opin. Plant Biol. 45, 26–35 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Clark, S. E., Williams, R. W. & Meyerowitz, E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 62, 575–585 (1997).

    Google Scholar 

  6. 6.

    Fletcher, J. C. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 (1999).

    CAS  PubMed  Google Scholar 

  7. 7.

    Jeong, S., Trotochaud, A. E. & Clark, S. E. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925–1933 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brand, U., Fletcher, J. C., Hobe, M., Meyerowitz, E. M. & Simon, R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619 (2000).

    CAS  PubMed  Google Scholar 

  9. 9.

    Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    CAS  PubMed  Google Scholar 

  10. 10.

    Bommert, P. et al. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132, 1235–1245 (2005).

    CAS  PubMed  Google Scholar 

  11. 11.

    Rodríguez-Leal, D. et al. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat. Genet. 51, 786–792 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tran, Q. H. et al. Mapping-by-sequencing via MutMap identifies a mutation in Zmcle7 underlying fasciation in a newly developed EMS mutant population in an elite tropical maize inbred. Genes 11, 281 (2020).

    CAS  PubMed Central  Google Scholar 

  13. 13.

    Je, B. I. et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet. 48, 785–791 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Taguchi-Shiobara, F., Yuan, Z., Hake, S. & Jackson, D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15, 2755–2766 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bommert, P., Nagasawa, N. S. & Jackson, D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat. Genet. 45, 334–337 (2013).

  16. 16.

    Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

  17. 17.

    Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wills, D. M. et al. From many, one: genetic control of prolificacy during maize domestication. PLoS Genet. 9, e1003604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA 104, 11376–11381 (2007).

    CAS  PubMed  Google Scholar 

  20. 20.

    Hung, H.-Y. et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl Acad. Sci. USA 109, E1913–E1921 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Yang, Q. et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc. Natl Acad. Sci. USA 110, 16969–16974 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Liu, L. et al. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet. 11, e1005670 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sun, Y. et al. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biol. 21, 143 (2020).

  24. 24.

    Parvathaneni, R. K. et al. The regulatory landscape of early maize inflorescence development. Genome Biol. 21, 165 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shull, G. H. The composition of a field of maize. Am. Breed. Assoc. Rep. 4, 296–301 (1908).

    Google Scholar 

  26. 26.

    Cross, H. Z. A selection procedure for ear drying-rates in maize. Euphytica 34, 409–418 (1985).

    Google Scholar 

  27. 27.

    Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Siepel, A., Pollard, K. S. & Haussler, D. in Research in Computational Molecular Biology (eds Apostolico, A., et al.) 190–205 (Springer, 2006).

  29. 29.

    Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740 (2009).

    CAS  PubMed  Google Scholar 

  31. 31.

    Gage, J. L., Monier, B., Giri, A. & Buckler, E. S. Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell 32, 2083–2093 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Goad, D. M., Zhu, C. & Kellogg, E. A. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. N. Phytol. 216, 605–616 (2017).

    CAS  Google Scholar 

  34. 34.

    Yang, N. et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052–1059 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Jia, H. et al. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat. Commun. 11, 988 (2020).

  36. 36.

    Brown, P. J. et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 7, e1002383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Yamasaki, M. et al. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17, 2859–2872 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Liu, H. et al. CRISPR-P 2.0: an improved CRISPR–Cas9 tool for genome editing in plants. Mol. Plant 10, 530–532 (2017).

  39. 39.

    Char, S. N. et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 15, 257–268 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Jackson, D., Veit, B. & Hake, S. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413 (1994).

  41. 41.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Quinlan, A. R. BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinforma. 2014, 1.12.1–34 (2014).

    Google Scholar 

  46. 46.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Vaidya, G., Lohman, D. J. & Meier, R. Cladistics multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

    Google Scholar 

  49. 49.

    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).

  50. 50.

    Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    CAS  Google Scholar 

  51. 51.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).

    CAS  PubMed  Google Scholar 

  52. 52.

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2014); https://www.R-project.org

Download references

Acknowledgements

We thank T. Mulligan and K. Schlecht for plant care, Z. Lippman and T. Tran for comments and discussion, and C. Fugina, B. Siegel and M. Kallman for their enthusiastic involvement in some of this work. This work was supported by funding from the National Science Foundation (grant no. IOS-1546837) and from Inari Agricuture, Inc., and from the Next-Generation BioGreen 21 Program System and Synthetic Agro-biotech Center (grant no. PJ01322602) from the Rural Development Administration, Republic of Korea, Office of China Postdoctoral Affairs Fellowship (Fellowship to L.L.), and USDA NIFA Postdoctoral Fellowship (award no. 2019-67012-29654 to J.G.).

Author information

Affiliations

Authors

Contributions

L.L. performed all experimental procedures except as described below, and prepared figures and co-wrote the manuscript. E.D.A., T.S. and Q.W. designed the promoter CRISPR sgRNAs and prepared the constructs for maize transformation. R.C. performed IM size measurements of the promoter CRISPR alleles. J.G. and M.B. performed the evolution analysis and co-wrote the manuscript. D.J. supervised the research and co-wrote the manuscript.

Corresponding author

Correspondence to David Jackson.

Ethics declarations

Competing interests

D.J. is a consultant with Inari, who have licensed promoter fine-tuning technology from Cold Spring Harbor Laboratory. The other authors declare no conflicts of interest.

Additional information

Peer review information Nature Plants thanks Scott Boden, Feng Tian, Thorsten Schnurbusch and Cristobal Uauy for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Supplementary Data 1

Statistical source data.

Supplementary Data 2

Statistical source data.

Supplementary Data 3

Statistical source data.

Supplementary Data 4

Statistical source data.

Supplementary data 5

Statistical source data.

Supplementary Data 6

Statistical source data.

Supplementary data 7

Statistical source data.

Supplementary Data 8

Statistical source data.

Supplementary Data 9

Statistical source data.

Supplementary Data 10

Statistical source data.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Gallagher, J., Arevalo, E.D. et al. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287–294 (2021). https://doi.org/10.1038/s41477-021-00858-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing