Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An efficient CRISPR–Cas12a promoter editing system for crop improvement

Abstract

Promoter editing represents an innovative approach to introduce quantitative trait variation (QTV) in crops. However, an efficient promoter editing system for QTV needs to be established. Here we develop a CRISPR–Cas12a promoter editing (CAPE) system that combines a promoter key-region estimating model and an efficient CRISPR–Cas12a-based multiplexed or singular editing system. CAPE is benchmarked in rice to produce QTV continuums for grain starch content and size by targeting OsGBSS1 and OsGS3, respectively. We then apply CAPE for promoter editing of OsD18, a gene encoding GA3ox in the gibberellin biosynthesis pathway. The resulting lines carry a QTV continuum of semidwarfism without significantly compromising grain measures. Field trials demonstrated that the OsD18 promoter editing lines have the same yield performance and antilodging phenotype as the Green Revolution OsSD1 mutants in different genetic backgrounds. Hence, promoter editing of OsD18 generates a quantitative Green Revolution trait. Together, we demonstrate a CAPE-based promoter editing and tuning pipeline for efficient production of useful QTV continuum in crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rational design of the CAPE system.
Fig. 2: Generation of a QTV continuum of the starch content of rice by promoter editing of OsGBSS1.
Fig. 3: Generation of a QTV continuum of rice grain size by promoter editing of OsGS3.
Fig. 4: Generation of a QTV continuum of rice plant height by promoter editing of OsD18.
Fig. 5: Comparison of the levels of active gibberellins and differentially expressed genes between three OsD18-PE lines and controls.
Fig. 6: Field trials of OsD18 promoter editing lines in different genetic backgrounds.
Fig. 7: Summary of genome editing outcomes in this study towards engineering semidwarfism in rice.

Similar content being viewed by others

Data availability

Sequence conservation data were downloaded from PlantRegMap. The TF binding motif datasets were downloaded from JASPAR (2020 Core Plants collections). Genetic variations and phenotype data of rice were downloaded from MBKbase. The rice reference genome (MSU/Tigr7) was downloaded from the Rice Genome Annotation Project. The tomato reference genome (SL4.0) was downloaded from the Solanaceae Genomics Network. The maize reference genome (AGPv4) was downloaded from MaizeGDB. Public open chromatin and histone modification datasets were retrieved from the NCBI under the accession numbers GSE26610 and GSM2084219 for rice, GSE164297 and PRJNA381300 for tomato, and PRJNA599454 and PRJNA417726 for maize.

Code availability

The instructions of feature data processing and the complete pipeline of CAPE for calculating aggregate scores and detecting KRs have been deposited to GitHub (https://github.com/zhangtaolab/CAPE).

References

  1. Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Cui, Y. et al. Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9. Plant Biotechnol. J. 18, 1987–1989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeng, D. et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5′UTR–intron editing improves grain quality in rice. Plant Biotechnol. J. 18, 2385–2387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, L. et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol. J. 18, 2164–2166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song, X. et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403–1411 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, L. et al. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366, eaax0025 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ren, Q. et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat. Plants 7, 25–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, S. et al. Hypercompact CRISPR–Cas12j2 (CasPhi) enables genome editing, gene activation, and epigenome editing in plants. Plant Commun. 3, 100453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, G. et al. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. Nat. Plants 8, 419–433 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, H. et al. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol. 21, 24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Deplancke, B., Alpern, D. & Gardeux, V. The genetics of transcription factor DNA binding variation. Cell 166, 538–554 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Xiao, Q. et al. The landscape of promoter-centred RNA–DNA interactions in rice. Nat. Plants 8, 157–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Song, B. et al. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res. 31, 1245–1257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sackton, T. B. et al. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364, 74–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Parvathaneni, R. K. et al. The regulatory landscape of early maize inflorescence development. Genome Biol. 21, 165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kremling, K. A. G. et al. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555, 520–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Bozhilov, Y. K. et al. A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer-blocker. Nat. Commun. 12, 3806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24, 2719–2731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tao, S., Lin, K., Zhu, Q. & Zhang, W. MH-seq for functional characterization of open chromatin in plants. Trends Plant Sci. 25, 618–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  28. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, X. et al. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Zhong, Z. et al. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol. Plant 11, 999–1002 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Tang, X. et al. A single transcript CRISPR–Cas9 system for efficient genome editing in plants. Mol. Plant 9, 1088–1091 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, M., Mao, Y., Lu, Y., Tao, X. & Zhu, J. K. Multiplex gene editing in rice using the CRISPR–Cpf1 system. Mol. Plant 10, 1011–1013 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, X. et al. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnol. J. 17, 1431–1445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malzahn, A. A. et al. Application of CRISPR–Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 17, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhong, Z. et al. Intron-based single transcript unit CRISPR systems for plant genome editing. Rice 13, 8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang, L., Sreenivasulu, N. & Liu, Q. Waxy editing: old meets new. Trends Plant Sci. 25, 963–966 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki, A. et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Spielmeyer, W., Ellis, M. H. & Chandler, P. M. Semidwarf (sd-1), “Green Revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl Acad. Sci. USA 99, 9043–9048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hendelman, A. et al. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 184, 1724–1739 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Tian, Z. et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl Acad. Sci. USA 106, 21760–21765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao, H. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl Acad. Sci. USA 107, 19579–19584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, J. et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep. 38, 475–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Takano-Kai, N. et al. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182, 1323–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng, J. R. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y. et al. A strigolactone biosynthesis gene contributed to the Green Revolution in rice. Mol. Plant 13, 923–932 (2020).

    Article  PubMed  Google Scholar 

  49. Fang, N. et al. SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice 9, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu, Y. et al. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol. J. 14, 377–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Arite, T. et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, S. et al. Xiaowei, a new rice germplasm for large-scale indoor research. Mol. Plant 11, 1418–1420 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Nagai, K. et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Spielmann, M., Lupianez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Meng, F. L. et al. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. Plant Cell 33, 1997–2014 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, X. et al. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nat. Plants 7, 419–427 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

    CAS  PubMed  Google Scholar 

  58. Tian, F., Yang, D. C., Meng, Y. Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    CAS  PubMed  Google Scholar 

  59. Peng, H. et al. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res. 48, D1085–D1092 (2020).

    CAS  PubMed  Google Scholar 

  60. Kawahara, Y. et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 11–12 (2011).

    Article  Google Scholar 

  62. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang, T., Marand, A. P. & Jiang, J. PlantDHS: a database for DNase I hypersensitive sites in plants. Nucleic Acids Res. 44, D1148–D1153 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, Y. et al. CRISPR-BETS: a base-editing design tool for generating stop codons. Plant Biotechnol. J. 20, 499–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Tang, X. et al. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y. et al. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. Plant Biotechnol. J. 20, 1670–1682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hosmani, P. S. et al. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. Preprint at bioRxiv https://doi.org/10.1101/767764 (2019).

  75. Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, J. et al. CRISPR–Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front. Plant Sci. 8, 1598 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhong, Z. et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol. Plant 12, 1027–1036 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Ren, Q. et al. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol. J. 19, 2052–2068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng, X. et al. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep. 35, 1545–1554 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, B. et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci. 26, 98–108 (2019).

    Article  Google Scholar 

  81. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, J. et al. CRISPR–Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. Plant Biotechnol. J. 20, 310–322 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Zhou, J. et al. Efficient deletion of multiple circle RNA loci by CRISPR–Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnol. J. 19, 1240–1252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng, X. et al. Loss-function mutants of OsCKX gene family based on CRISPR–Cas systems revealed their diversified roles in rice. Plant Genome 20, e20283 (2023).

    Google Scholar 

  87. Zheng, X. et al. MIGS as a simple and efficient method for gene silencing in rice. Front. Plant Sci. 9, 662 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Q. Qian (China National Rice Research Institute, Chinese Academy of Agricultural Sciences) for providing xiaowei, a OsD18-null mutant in a slightly different Nipponbare background. This research was supported by the National Natural Science Foundation of China (award nos. 32270433, 32101205, 32072045 and 31960423) to Y. Zhang, X.Z. and X.T.; and the National Agricultural Major Science and Technology Program of China (award no. NK2022010204) to Y. Zhang and J.Z.; the Technology Innovation and Application Development Program of Chongqing (award no. CSTC2021JSCX-CYLHX0001) to X.T., J.Z. and Y. Zhang; the Sichuan Science and Technology Program (award nos. 2021JDRC0032, 2021YFH0084 and 2021YFYZ0016) to J.Z. and Y. Zhang; and the Open Foundation of Jiangsu Key Laboratory of Crop Genetics and Physiology (award no. YCSL202009) to J.Z., Y. Zhang and T.Z. It was also supported by the NSF Plant Genome Research Program (grant nos. IOS-2029889 and IOS-2132693) and the MAES Competitive Grants Program (CGP) to Y.Q.

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhang proposed the project. Y. Zhang, T.Z., Y.Q. and J.Z. conceived and designed the experiments. G.L. and T.Z. developed the CAPE estimating system. J.Z., X.T. and Y. Zhao designed guide RNA and generated all the constructs for CAPE. G.L., Y. Han and T.Z. built the genome browser for CAPE. Y. Zhao, R.Z., L.L., X.J., Y.G., Y. He, H.Y. and X.Z. performed the rice stable transformation and plant material assays. J.Z., R.Z., Y. Zhao, Q.H. and X.J. performed the mRNA-seq and qPCR experiments. Y.W., Y. Han and Y.B. assisted with data analysis. Y. Zhang, Y.Q., T.Z., J.Z. and G.L. analysed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yiping Qi, Tao Zhang or Yong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Pengcheng Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23.

Reporting Summary

Supplementary Table 1

Supplementary Table 1. The differential expression of rice genes via mRNA-Seq. Table 2. Gibberellin-response genes in rice. Table 3. Gibberellin biosynthesis genes in rice. Table 4. Comparison of promoter editing efficiency in rice. Table 5. Oligonucleotides used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, G., Zhao, Y. et al. An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nat. Plants 9, 588–604 (2023). https://doi.org/10.1038/s41477-023-01384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01384-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research