Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ancient genomes reveal early Andean farmers selected common beans while preserving diversity

An Author Correction to this article was published on 04 March 2021

This article has been updated

Abstract

All crops are the product of a domestication process that started less than 12,000 years ago from one or more wild populations1,2. Farmers selected desirable phenotypic traits (such as improved energy accumulation, palatability of seeds and reduced natural shattering3) while leading domesticated populations through several more or less gradual demographic contractions2,4. As a consequence, the erosion of wild genetic variation5 is typical of modern cultivars, making them highly susceptible to pathogens, pests and environmental change6,7. The loss of genetic diversity hampers further crop improvement programmes to increase food production in a changing world, posing serious threats to food security8,9. Using both ancient and modern seeds, we analysed the temporal dynamics of genetic variation and selection during the domestication process of the common bean (Phaseolus vulgaris) in the southern Andes. Here, we show that most domestic traits were selected for before 2,500 years ago, with no or only minor loss of whole-genome heterozygosity. In fact, most of the changes at coding genes and linked regions that differentiate wild and domestic genomes are already present in the ancient genomes analysed here, and all ancient domestic genomes dated between 600 and 2,500 years ago are highly variable (at least as variable as modern genomes from the wild). Single seeds from modern cultivars show reduced variation when compared with ancient seeds, indicating that intensive selection within cultivars in the past few centuries probably partitioned ancestral variation within different genetically homogenous cultivars. When cultivars from different Andean regions are pooled, the genomic variation of the pool is higher than that observed in the pool of ancient seeds from north and central western Argentina. Considering that most desirable phenotypic traits are probably controlled by multiple polymorphic genes10, a plausible explanation of this decoupling of selection and genetic erosion is that early farmers applied a relatively weak selection pressure2 by using many phenotypically similar but genetically diverse individuals as parents. Our results imply that selection strategies during the past few centuries, as compared with earlier times, more intensively reduced genetic variation within cultivars and produced further improvements by focusing on a few plants carrying the traits of interest, at the cost of marked genetic erosion within Andean landraces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity in ancient and modern common bean.
Fig. 2: Timing of selection in common bean from South America.

Similar content being viewed by others

Data availability

The sequenced raw reads from the ancient samples are publicly available as NCBI Bioproject (ID: PRJNA574560). The modern sample genomic data are available with the following NCBI accession codes: SRR10161640, SRR10161629, SRR10161767, SRR10161647, SRR10161646, SRR10161645, SRR10161601, SRR10161592, SRR10161584, SRR10161684, SRR10161683, SRR10161697, SRR10161690, SRR10161688, SRR10161651, SRR10161745 and SRR10161723.

Code availability

The custom scripts developed in this study are publicly available in the GitHub repository at https://github.com/anbena/ancient-beans.

Change history

References

  1. Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Purugganan, M. D. Evolutionary insights into the nature of plant domestication. Curr. Biol. 29, 705–714 (2019).

    Article  CAS  Google Scholar 

  3. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R. & Visser, B. Genetic erosion in crops: concept, research results and challenges. Plant Genet. Resour. 8, 1–15 (2010).

    Article  Google Scholar 

  6. Babiker, E. M. et al. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor. Appl. Genet. 128, 605–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 8, 1496 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).

    Article  PubMed  Google Scholar 

  9. Gepts, P. Plant genetic resources conservation and utilization. Crop Sci. 46, 2278–2292 (2006).

    Article  Google Scholar 

  10. Beissinger, T. M. et al. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084 (2016).

    Article  PubMed  Google Scholar 

  11. Hyten, D. L. et al. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl Acad. Sci. USA 103, 16666–16671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl Acad. Sci. USA 111, 6147–6152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Fu, Y. B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 128, 2131–2142 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bevan, M. W. et al. Genomic innovation for crop improvement. Nature 543, 346–354 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Bitocchi, E. et al. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc. Natl Acad. Sci. USA 109, E788–E796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bitocchi, E. et al. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front. Plant Sci. 8, 722 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Winkel, T. et al. Discontinuities in quinoa biodiversity in the dry Andes: an 18-century perspective based on allelic genotyping. PLoS ONE 13, e0207519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177, 1419–1435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rendón-Anaya, M. et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol. 18, 60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Allaby, R. G., Ware, R. L. & Kistler, L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol. Appl. 12, 29–37 (2019).

    Article  PubMed  Google Scholar 

  23. Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).

    Article  PubMed  Google Scholar 

  24. Pochettino, M. L. & Scattolin, M. C. Identificación y significado de frutos y semillas carbonizados de sitios arqueológicos de la ladera occidental del Aconquija, Prov. Catamarca, Rca. Argentina. Rev. Mus. La Plata, Antropol. 9, 169–181 (1991).

    Google Scholar 

  25. Singh, S. P., Gepts, P. & Debouck, D. G. Races of common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 45, 379–396 (1991).

    Article  Google Scholar 

  26. Williams, V. I. Formaciones sociales en el noroeste argentino: variabilidad prehispánica en el surandino durante el Periodo de Desarrollos Regionales y el estado Inca. Rev. Haucaypata 9, 62–76 (2015).

    Google Scholar 

  27. Núñez, L. & Nielsen, A. E. En Ruta: Arquelogía, Historia y Etnografía del Tráfico Surandino (Encuentro Grupo Editor, 2011).

  28. Da Fonseca, R. R. et al. The origin and evolution of maize in the southwestern United States. Nat. Plants 1, 14003 (2015).

    Article  PubMed  Google Scholar 

  29. Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Rau, D. et al. Genomic dissection of pod shattering in common bean: mutations at non‐orthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. Plant J. 97, 693–714 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Saitoh, K., Onishi, K., Mikami, I., Thidar, K. & Sano, Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168, 997–1007 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Estrada, O., Breen, J., Richards, S. M. & Cooper, A. Ancient plant DNA in the genomic era. Nat. Plants 4, 394–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Brunson, K. & Reich, D. The promise of paleogenomics beyond our own species. Trends Genet. 35, 319–329 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 48, 1089–1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Wagner, S. et al. High throughput DNA sequencing of ancient wood. Mol. Ecol. 27, 1138–1154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, O. et al. A domestication history of dynamic adaptation and genomic deterioration in sorghum. Nat. Plants 5, 369–379 (2019).

    Article  PubMed  Google Scholar 

  39. Lema, V. Non-domesticated cultivation in the Andes: plant management and nurturing in the Argentine northwest. Veg. Hist. Archaeobot. 24, 143–150 (2015).

    Article  Google Scholar 

  40. Oliszewski, N. & Babot, P. in Avances y Desafíos Metodológicos en Arqueobotánica: Miradas Consensuadas y Diálogos Compartidos desde Sudamérica (eds Belmar, C. & Lema, V.) 301–324 (Facultad de Patrimonio Cultural y Educaciòn Universidad SEK Chile, 2015).

  41. Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Prot. 9, 1056–1082 (2014).

    Article  CAS  Google Scholar 

  42. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Article  Google Scholar 

  44. Vieira, F. G., Fumagalli, M., Albrechtsen, A. & Nielsen, R. Estimating inbreeding coefficients from NGS data: impact on genotype calling and allele frequency estimation. Genome Res. 23, 1852–1861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Slotte, T. The impact of linked selection on plant genomic variation. Brief. Funct. Genomics 13, 268–275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Renaut, S. & Rieseberg, L. H. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32, 2273–2283 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Beissinger, T. M. et al. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084 (2016).

    Article  PubMed  Google Scholar 

  50. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the University of Ferrara, the CUIA (Consorzio Universitario Italiano per l’Argentina, 5^ Research Program), the ERA-CAPS project Bean_Adapt, internal grants from the Marche Polytechnic University and the University of Firenze, the Italian Ministry of Education, University and Research (project Dipartimenti di Eccellenza 2018–2022, PRIN2017 grant no. 20174BTC4R), the Swedish Research Council grant no. VR-UF E0347601 and the Norwegian Research Council grant no. 262777. We also thank CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas) and the Institutions and Museums in Argentina for their support in the fieldwork, and in particular for recovering the archaeo-botanical specimens and studying the archaeological sites. M.D.L. sadly passed away during the preparation of this paper. One of the seeds we sequenced was kindly donated by the Archaeological Museum Pío Pablo Díaz in Cachi (Salta, Argentina), where M.D.L. was Director for many years.

Author information

Authors and Affiliations

Authors

Contributions

G.B. and R.P. conceived the project. G.B., E.T. and A.B. designed the research. M.L., S.V., L.C. and S.B. performed the experiments. E.T., A.B., M.L., S.B., A.I. and C.X. analysed the data. G.B., E.T., A.B., M.L., F.R., B.S. and S.B. contributed to the manuscript preparation. V.L., P.B., N.O., A.G., G.N., C.T.M. and M.D.L. collected the samples. G.B., E.T., A.B., R.P., M.L., S.B. and B.S. interpreted the data. G.B. and E.T. wrote the manuscript. All authors revised and approved the manuscript.

Corresponding authors

Correspondence to Emiliano Trucchi or Giorgio Bertorelle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Robin Allaby, Kelly Swarts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11, references, Figs. 1–13 and Tables 2–6.

Reporting Summary

Supplementary Table 1

Ancient seed information: AMS dates and basic sequencing statistics.

Supplementary Table 7

Results of selection scan using different accessions as the outgroup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trucchi, E., Benazzo, A., Lari, M. et al. Ancient genomes reveal early Andean farmers selected common beans while preserving diversity. Nat. Plants 7, 123–128 (2021). https://doi.org/10.1038/s41477-021-00848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00848-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research