Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genome-wide dynamics of purging during selfing in maize


Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Study design and estimates of genome size.
Fig. 2: Various components of the genome compared between GSΔ and GScon groups and between S1 and S6.
Fig. 3: Proportion of derived allele across SNP types, generations and recombination categories.
Fig. 4: Inference of heterozygous and homozygous genomic regions, based on SNPs inferred to be heterozygous in the parent.

Data availability

Sequence data that support the findings of this study have been deposited in NCBI Short Read Archive under project code SRP158803. The gff files used in this study, the GS flow cytometry data and the raw mapping count data are available on ( or from the corresponding author. The SNP VCF files and dataset are available from the corresponding authors upon request.

Code availability

Custom code used in SNP analyses is available from the corresponding authors upon request.


  1. 1.

    Darwin, C. The Effects of Self and Cross Fertilization in the Vegetable Kingdom (John Murray, 1876).

  2. 2.

    Fisher, R. A. Average excess and average effect of a gene substitution. Ann. Hum. Genet. 11, 53–63 (1941).

    Google Scholar 

  3. 3.

    Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet 10, 783–796 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Hedrick, P. W., Hellsten, U. & Grattapaglia, D. Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis. New Phytol. 209, 600–611 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Schnable, P. S. & Springer, N. M. Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 64, 71–88 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479–513 (1999).

    Article  Google Scholar 

  7. 7.

    Rodgers-Melnick, E. et al. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc. Natl Acad. Sci. USA 112, 3823–3828 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Barrière, A. et al. Detecting heterozygosity in shotgun genome assemblies: lessons from obligately outcrossing nematodes. Genome Res. 19, 470–480 (2009).

    Article  Google Scholar 

  10. 10.

    Brandenburg, J. T. et al. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet. 13, e1006666 (2017).

    Article  Google Scholar 

  11. 11.

    Crnokrak, P. & Barrett, S. C. Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56, 2347–2358 (2002).

    Article  Google Scholar 

  12. 12.

    Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).

    Article  Google Scholar 

  13. 13.

    Charlesworth, B., Charlesworth, D. & Morgan, M. T. Genetic loads and estimates of mutation rates in highly inbred plant populations. Nature 347, 380–382 (1990).

    Article  Google Scholar 

  14. 14.

    Arunkumar, R., Ness, R. W., Wright, S. I. & Barrett, S. C. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations. Genetics 199, 817–829 (2015).

    Article  Google Scholar 

  15. 15.

    Liu, Q., Zhou, Y., Morrell, P. L. & Gaut, B. S. Deleterious variants in Asian rice and the potential cost of domestication. Mol. Biol. Evol. 34, 908–924 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G. & Allendorf, F. W. Genomics advances the study of inbreeding depression in the wild. Evol. Appl. 9, 1205–1218 (2016).

    Article  Google Scholar 

  17. 17.

    Morran, L. T., Ohdera, A. H. & Phillips, P. C. Purging deleterious mutations under self fertilization: paradoxical recovery in fitness with increasing mutation rate in Caenorhabditis elegans. PLoS ONE 5, e14473 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet Res. 8, 269–294 (1966).

    CAS  Article  Google Scholar 

  19. 19.

    Tenaillon, M. I., Hollister, J. D. & Gaut, B. S. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 15, 471–478 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Tenaillon, M. I., Hufford, M. B., Gaut, B. S. & Ross-Ibarra, J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol. Evol. 3, 219–229 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Diez, C. M., Meca, E., Tenaillon, M. I. & Gaut, B. S. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome. PLoS Genet. 10, e1004298 (2014).

    Article  Google Scholar 

  22. 22.

    Bilinski, P. et al. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays . PLoS Genet. 14, e1007162 (2018).

    Article  Google Scholar 

  23. 23.

    Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. Biol. Sci. 280, 20130133 (2013).

    Article  Google Scholar 

  24. 24.

    Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19, 1419–1428 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Lee, Y. C. G. & Karpen, G. H. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 6, e25762 (2017).

    Article  Google Scholar 

  26. 26.

    Quadrana, L. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5, e15716 (2016).

    Article  Google Scholar 

  27. 27.

    Price, H. J. Evolution of DNA content in higher plants. Bot. Rev. 42, 27 (1976).

    CAS  Article  Google Scholar 

  28. 28.

    Wright, S. I., Ness, R. W., Foxe, J. P. & Barrett, S. C. H. Genomic consequences of outcrossing and selfing in plants. Int. J. Plant Sci. 169, 105–118 (2008).

    Article  Google Scholar 

  29. 29.

    Fierst, J. L. et al. Reproductive mode and the evolution of genome size and structure in Caenorhabditis nematodes. PLoS Genet. 11, e1005323 (2015).

    Article  Google Scholar 

  30. 30.

    Wills, D. M. et al. From many, one: genetic control of prolificacy during maize domestication. PLoS Genet. 9, e1003604 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Diez, C. M. et al. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol. 199, 264–276 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytom. A 51, 127–128 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    Long, Q. et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 45, 884–890 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Cullis, C. A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. 95, 201–206 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    Jian, Y. et al. Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Sci. Rep. 7, 5954 (2017).

    Article  Google Scholar 

  36. 36.

    Mroczek, R. J., Melo, J. R., Luce, A. C., Hiatt, E. N. & Dawe, R. K. The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype. Genetics 174, 145–154 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Randolph, L. F. Genetic characteristics of the B chromosomes in maize. Genetics 26, 608–631 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yamakake, K. & Angel, T. Cytological Studies in Maize (Zea mays L.) and Teosinte (Zea mexicana (Schrader) Kuntze) in Relation to Their Origin and Evolution (Massachusetts Agricultural Experiment Station, 1976).

  39. 39.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  Google Scholar 

  40. 40.

    Springer, N. M. et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282–1288 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Devos, K. M., Brown, J. K. & Bennetzen, J. L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079 (2002).

    CAS  Article  Google Scholar 

  42. 42.

    Bousios, A. et al. The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story. Plant J. 69, 475–488 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Darzentas, N., Bousios, A., Apostolidou, V. & Tsaftaris, A. S. MASiVE: Mapping and Analysis of Sirevirus Elements in plant genome sequences. Bioinformatics 26, 2452–2454 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    Takebayashi, N. & Morrell, P. L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).

    CAS  Article  Google Scholar 

  46. 46.

    Weller, S. G., Sakai, A. K., Thai, D. A., Tom, J. & Rankin, A. E. Inbreeding depression and heterosis in populations of Schiedea viscosa, a highly selfing species. J. Evol. Biol. 18, 1434–1444 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Smarda, P., Horova, L., Bures, P., Hralova, I. & Markova, M. Stabilizing selection on genome size in a population of Festuca pallens under conditions of intensive intraspecific competition. New Phytol. 187, 1195–1204 (2010).

    Article  Google Scholar 

  48. 48.

    Rayburn, A. L., Dudley, J. W. & Biradar, D. P. Selection for early flowering results in simultaneous selection for reduced nuclear-DNA content in maize. Plant Breed. 112, 318–322 (1994).

    Article  Google Scholar 

  49. 49.

    Sun, S. et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289–1295 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803–807 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Lyu, H., He, Z., Wu, C. I. & Shi, S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 217, 428–438 (2018).

    CAS  Article  Google Scholar 

  52. 52.

    Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Yin, D. et al. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 359, 55–61 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    Springer, N. M. & Stupar, R. M. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res. 17, 264–275 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Gore, M. A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).

    CAS  Article  Google Scholar 

  56. 56.

    Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Bersabé, D., Caballero, A., Pérez-Figueroa, A. & García-Dorado, A. On the consequences of purging and linkage on fitness and genetic diversity. G3 6, 171–181 (2015).

    Article  Google Scholar 

  58. 58.

    Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656–660 (2018).

    CAS  Article  Google Scholar 

  59. 59.

    Tenaillon, M. I., Manicacci, D., Nicolas, S. D., Tardieu, F. & Welcker, C. Testing the link between genome size and growth rate in maize. PeerJ 4, e2408 (2016).

    Article  Google Scholar 

  60. 60.

    Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet 43, 476–481 (2011).

    Article  Google Scholar 

  61. 61.

    Beaulieu, J. M., Leitch, I. J., Patel, S., Pendharkar, A. & Knight, C. A. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179, 975–986 (2008).

    Article  Google Scholar 

  62. 62.

    Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).

    CAS  Article  Google Scholar 

  63. 63.

    Charlesworth, D., Charlesworth, B. & Strobeck, C. Selection for recombination in partially self-fertilizing populations. Genetics 93, 237–244 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Roze, D. & Lenormand, T. Self-fertilization and the evolution of recombination. Genetics 170, 841–857 (2005).

    CAS  Article  Google Scholar 

  65. 65.

    Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    CAS  Article  Google Scholar 

  66. 66.

    Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  68. 68.

    Quinlan, A. R. BEDTools: The Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinforma. 47, 11.12.1–11.12.34 (2014).

    Article  Google Scholar 

  69. 69.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  Article  Google Scholar 

  71. 71.

    Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    CAS  Article  Google Scholar 

  72. 72.

    Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  Google Scholar 

  73. 73.

    Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317 (2016).

    Article  Google Scholar 

Download references


A.M. is supported by an EMBO Postdoctoral Fellowship ALTF 775-2017 and by HFSPO Fellowship LT000496/2018-L. A.B. is supported by The Royal Society (award numbers UF160222 and RGF/R1/180006). M.C.S. is supported by an NSF Graduate Research Fellowship to UC Davis (1148897). D.K.S. is supported by a Postdoctoral Fellowship from the National Science Foundation (NSF) Plant Genome Research Program (1609024). J.F.D. is supported by NSF grant IOS 1238014. Q.L. is supported by a National Natural Science Foundation of China grant (no. 31471431) and the Training Program for Outstanding Young Talents of Zhejiang A&F University to Q.L. B.S.G. is supported by NSF grants 1542703 and 1655808.

Author information




K.R., A.M. and B.S.G. contributed analyses, ideas and writing. G.R.J.G. and Q.L. performed analyses. K.R., C.M.D. and B.S.G. helped design the experiment, grew plants and measured phenotypes; A.B., G.R.J.G., Q.L., D.K.S., J.F.D. and M.C.S. provided materials, data and/or critical ideas. B.S.G. conceived of the project.

Corresponding authors

Correspondence to Qingpo Liu or Brandon S. Gaut.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Tables 1–18

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roessler, K., Muyle, A., Diez, C.M. et al. The genome-wide dynamics of purging during selfing in maize. Nat. Plants 5, 980–990 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing