Fossil evidence of core monocots in the Early Cretaceous


All the major clades of angiosperms have a fossil record that extends back to more than 100 million years ago (Early Cretaceous), mostly in agreement with molecular dating. However, the Early Cretaceous record of monocots is very poor compared to other angiosperms. Their herbaceous nature has been invoked to explain this rarity, but biogeography could also be an explanation. Unfortunately, most of the Early Cretaceous angiosperm record comes from northern mid-latitudes. The Crato plattenkalk limestone offers a unique window into the Early Cretaceous vegetation of the tropics and has already yielded monocot fossils. Here, we describe a whole monocotyledonous plant from root to reproductive organs that is anatomically preserved. The good preservation of the fossils allowed the evaluation of reproductive, vegetative and anatomical characteristics of monocots, leading to a robust identification of this fossil as a crown monocot. Its occurrence in Northern Gondwana supports the possibility of an early radiation of monocots in the tropics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Holotype and paratype of Cratolirion bognerianum gen. et sp. nov.
Fig. 2: Anatomy of Cratolirion bognerianum gen. et sp. nov.
Fig. 3: Reproductive organ and phylogenetic position of Cratolirion bognerianum gen. et sp. nov.

Data availability

The authors declare that all other data supporting the findings of this study are available in the paper and its supplementary information files or from the corresponding author upon reasonable request.


  1. 1.

    Theophrastus. Enquiry into Plants and Minor Works on Odours and Weather Signs, with an English Translation by Sir Arthur Hort (William Heinemann, 1916).

  2. 2.

    Ray, J. Historia Plantarum (Mariae Clark, 1686).

  3. 3.

    Linnaeus, C. Genera Plantarum Eorumque Characteres Naturales (Leyden, 1737).

  4. 4.

    Gandolfo M. A., Nixon K. C. & Crepet W. L. in Monocots: Systematics and Evolution (eds Wilson, K. L. & Morrison, D. A.) 44–51 (Commonwealth Scientific and Industrial Research Organisation, 2000).

  5. 5.

    Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141, 399–436 (2003).

    Article  Google Scholar 

  6. 6.

    Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

  7. 7.

    Magallón, S., Gómez‐Acevedo, S., Sánchez‐Reyes, L. L. & Hernández‐Hernández, T. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).

    Article  Google Scholar 

  8. 8.

    Hertweck, K. L. et al. Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Bot. J. Linn. Soc. 178, 375–393 (2015).

    Article  Google Scholar 

  9. 9.

    Chase, M. W. Monocot relationships: an overview. Am. J. Bot. 91, 1645–1655 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    Kunzmann, L. et al. The Early Cretaceous Crato flora (Araripe Basin, Brazil): floristic, ecological and environmental aspects of an equatorial Gondwanan ecosystem. 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota (eds Martin, T. et al.) 61–62 (2018).

  11. 11.

    Martill, D. M., Bechly, G. & Loveridge, R. F. The Crato Fossil Beds of Brazil: Window into an Ancient World. (Cambridge Univ. Press, 2007).

  12. 12.

    Heimhofer, U. & Hochuli, P. A. Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Rev. Palaeobot. Palynol. 161, 105–126 (2010).

    Article  Google Scholar 

  13. 13.

    Mohr, B. A. R., Bernardes de Oliveira, M. E. C. & Loveridge, B. in The Crato Fossil Beds of Brazil: Window into an Ancient World. (eds Martill D. M. et al.) 537–565 (Cambridge Univ. Press, 2007).

  14. 14.

    Mohr, B. A. R., Schultka, S., Süss, H. & Bernardes-de-Oliveira, M. E. C. A new drought resistant gymnosperm taxon Duartenia araripensis gen. nov. et sp. nov. (Cheirolepidiaceae?) from the Early Cretaceous of Northern Gondwana. Palaeontogr. Abt. B 289, 1–25 (2012).

    Article  Google Scholar 

  15. 15.

    Löwe, S. A., Mohr, B. A., Coiffard, C. & Bernardes-de-Oliveira, M. E. Friedsellowia gracilifolia gen. nov. et sp. nov., a new gnetophyte from the Lower Cretaceous Crato Formation (Brazil). Palaeontogr. Abt. B 289, 139–177 (2013).

    Google Scholar 

  16. 16.

    Mohr, B. A. R. & Eklund, H. Araripia florifera, a magnoliid angiosperm from the Lower Cretaceous Crato Formation (Brazil). Rev. Palaeobot. Palynol. 126, 279–292 (2003).

    Article  Google Scholar 

  17. 17.

    Mohr, B. A. R., Coiffard, C. & Bernardes-de-Oliveira, M. E. C. Schenkeriphyllum glanduliferum, a new magnolialean angiosperm from the Early Cretaceous of Northern Gondwana and its relationships to fossil and modern Magnoliales. Rev. Palaeobot. Palynol. 189, 57–72 (2013).

    Article  Google Scholar 

  18. 18.

    Coiffard, C., Mohr, B. A. & Bernardes-de-Oliveira, M. E. Hexagyne philippiana gen. et sp. nov., a piperalean angiosperm from the Early Cretaceous of Northern Gondwana (Crato Formation, Brazil). Taxon 63, 1275–1286 (2014).

    Article  Google Scholar 

  19. 19.

    Coiffard, C., Mohr, B. A. & Bernardes-de-Oliveira, M. E. The Early Cretaceous Aroid, Spixiarum kipea gen. et sp. nov., and implications on early dispersal and ecology of basal monocots. Taxon 62, 997–1008 (2013).

    Article  Google Scholar 

  20. 20.

    Doyle, J. A. Fossil evidence on early evolution of the monocotyledons. Q. Rev. Biol. 48, 399–413 (1973).

    Article  Google Scholar 

  21. 21.

    Doyle, J. A., Endress, P. K. & Upchurch, G. R. Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Natl. Pragae 64, 59–87 (2008).

    Google Scholar 

  22. 22.

    Kvaček, J. et al. Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a possible link between Chloranthaceae and Ceratophyllum. Taxon 65, 1345–1373 (2016).

    Article  Google Scholar 

  23. 23.

    Stevenson, D. W. & Loconte, H. in Monocotyledons: Systematics and Evolution 2 (eds Rudall, P. J. et al.) 543–578 (Royal Botanic Gardens Kew, 1995).

  24. 24.

    Rudall, P. J., Stevenson, D. W. & Linder, H. P. Structure and systematics of Hanguana, a monocotyledon of uncertain affinity. Aust. Syst. Bot. 12, 311–330 (1999).

    Article  Google Scholar 

  25. 25.

    Rudall, P. J. Unique floral structures and iterative evolutionary themes in Asparagales: insights from a morphological cladistic analysis. Bot. Rev. 68, 488–509 (2002).

    Article  Google Scholar 

  26. 26.

    Michelangeli, F. A., Davis, J. I. & Stevenson, D. W. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Am. J. Bot. 90, 93–106 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    Petersen, G. et al. Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?). Cladistics 32, 141–159 (2016).

    Article  Google Scholar 

  28. 28.

    Barrett, C. F. et al. Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann. Bot. 113, 119–133 (2013).

    Article  Google Scholar 

  29. 29.

    Givnish, T. J. et al. Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics 32, 581–605 (2016).

    Article  Google Scholar 

  30. 30.

    Herendeen, P. S. & Crane, P. R. in Monocotyledons: Systematics and Evolution 2 (eds Rudall, P. J. et al.) 1–21 (Royal Botanic Gardens, Kew, 1995).

  31. 31.

    Estrada-Ruiz, E., Upchurch, J., Wolfe, J. A. & Cevallos-Ferriz, S. R. S. Comparative morphology of fossil and extant leaves of Nelumbonaceae, including a new genus from the Late Cretaceous of Western North America. Syst. Bot. 36, 337–351 (2011).

    Article  Google Scholar 

  32. 32.

    Givnish, T. J. et al. Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proc. R. Soc. B 272, 1481–1490 (2005).

    Article  Google Scholar 

  33. 33.

    Sender, L. M., Doyle, J. A., Upchurch, G. R. Jr, Villanueva-Amadoz, U. & Diez, J. B. Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain. J. Syst. Palaeontol. 0, 1–34 (2018).

    Google Scholar 

  34. 34.

    Bremer, K. & Janssen, T. Gondwanan origin of major monocot groups inferred from dispersal–vicariance analysis. Aliso 22, 22–27 (2006).

    Article  Google Scholar 

  35. 35.

    Mohr, B. A., Bernardes-de-Oliveira, M. E., Barale, G. & Ouaja, M. Palaeogeographic distribution and ecology of Klitzschophyllites, an early Cretaceous angiosperm in southern Laurasia and northern Gondwana. Cretac. Res. 27, 464–472 (2006).

    Article  Google Scholar 

  36. 36.

    Sutton, M. D., Garwood, R. J., Siveter, D. J. & Siveter, D. J. SPIERS and VAXML: a software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontol. Electron. 15, 1–14 (2012).

    Google Scholar 

  37. 37.

    Goloboff, F., Farris, J. S. & Nixon, K. C. TNT: Tree Analysis using New Technology (2003).

  38. 38.

    Mesquite: a modular system for evolutionary analysis v.3.02 (Maddison, W. P. & Maddison, D. R., 2015).

Download references


We would like to thank the institutions and researchers that made this publication possible. The work has been improved through discussions with various colleagues, especially J. Bogner (Botanical Garden, Munich), P.J. Rudall and B. Mohr. We would also like to thank the staff of the Museum of Natural History, Berlin, L. Maitas for technical help at the herbarium, and C. Radke and H.-J. Götz for part of the photography. We also acknowledge the permission of the curator R. Vogt to the authors for use of the Herbarium of the Berlin Botanical Garden (B) for comparative work. Funding was provided by the German Funding Agency (DFG), which provides support for C.C. (grant No. CO 1060/3-1). There is also a contribution to the Project CNPq 310823/2016-1 Research Productivity Grant for M.E.C.B. as senior collaborator professor in IGc/USP, Brazil.

Author information




C.C. contributed to the design and scope of the paper and the evaluations of the fossil taxa discussed in the paper. N.K. and I.M. provided the data and tomographic analysis of the fossil. C.C., N.K. and M.E.C.B. contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Clément Coiffard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks James Doyle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Fossil analysis, Supplementary Fig. 1 and matrix.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coiffard, C., Kardjilov, N., Manke, I. et al. Fossil evidence of core monocots in the Early Cretaceous. Nat. Plants 5, 691–696 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing