The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors


The frequency and orientation of cell division are regulated by intercellular signalling molecules; however, tissue-specific regulatory systems for cell divisions are only partially understood. Here, we report that the peptide hormone CLAVATA3/ESR-RELATED 9/10 (CLE9/10) regulates two different developmental processes, stomatal lineage development and xylem development, through two distinct receptor systems in Arabidopsis thaliana. We show that the receptor kinase HAESA-LIKE 1 (HSL1) is a CLE9/10 receptor that regulates stomatal lineage cell division, and BARELY NO MERISTEM (BAM) class receptor kinases are CLE9/10 receptors that regulate periclinal cell division of xylem precursor cells. Both HSL1 and BAM1 bind to CLE9/10, but only HSL1 recruits SOMATIC EMBRYOGENESIS RECEPTOR KINASES as co-receptors in the presence of CLE9/10, suggesting different signalling modes for these receptor systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The CLE9/10 peptide negatively regulates the formation of stomatal precursor cells by SPCH destabilization.
Fig. 2: Mutations in CLE9 increase the numbers of epidermal cells in cotyledons and leaves.
Fig. 3: The HSL1 receptor kinase is required for the action of CLE9/10 on stomatal lineage development.
Fig. 4: CLE9/10 directly binds to HSL1 and induces the recruitment of SERK1.
Fig. 5: CLE9/10 negatively regulates periclinal cell division in xylem files.
Fig. 6: The BAM family receptors are required for CLE9/10 regulation of xylem numbers.
Fig. 7: A model for the action of CLE9/10.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 26 December 2018

    In the version of this Article originally published, the authors incorrectly stated that the work was supported by Innovative Areas grant number 25003006; the correct number is 25113006. This statement has now been amended in all online versions of the Article.


  1. 1.

    Yamaguchi, Y. L., Ishida, T. & Sawa, S. CLE peptides and their signaling pathways in plant development. J. Exp. Bot. 67, 4813–4826 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Fletcher, J. C., Brand, U., Running, M. P., Simon, R. & Meyerowitz, E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    Shinohara, H. & Matsubayashi, Y. Reevaluation of the CLV3–receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J. 82, 328–336 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Hirakawa, Y., Kondo, Y. & Fukuda, H. Establishment and maintenance of vascular cell communities through local signaling. Curr. Opin. Plant Biol. 14, 17–23 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Kondo, Y., Hirakawa, Y., Kieber, J. J. & Fukuda, H. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant Cell Physiol. 52, 37–48 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Pillitteri, L. J. & Torii, K. U. Mechanisms of stomatal development. Annu. Rev. Plant Biol. 63, 591–614 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Geisler, M., Nadeau, J. & Sack, F. D. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12, 2075–2086 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Bergmann, D. C. & Sack, F. D. Stomatal development. Annu. Rev. Plant Biol. 58, 163–181 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Pillitteri, L. J., Sloan, D. B., Bogenschutz, N. L. & Torii, K. U. Termination of asymmetric cell division and differentiation of stomata. Nature 445, 501–505 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    MacAlister, C. A., Ohashi-Ito, K. & Bergmann, D. C. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537–540 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Lampard, G. R., MacAlister, C. A. & Bergmann, D. C. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322, 1113–1116 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Meng, X. et al. Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning. Curr. Biol. 25, 2361–2372 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Lee, J. S. et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature 522, 439–443 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Jewaria, P. K. et al. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level. Plant Cell Physiol. 54, 1253–1262 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Hara, K. et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 50, 1019–1031 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    De Rybel, B., Mahonen, A. P., Helariutta, Y. & Weijers, D. Plant vascular development: from early specification to differentiation. Nat. Rev. Mol. Cell Biol. 17, 30–40 (2016).

    Article  Google Scholar 

  17. 17.

    Bergmann, D. C., Lukowitz, W. & Somerville, C. R. Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494–1497 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    Pillitteri, L. J., Peterson, K. M., Horst, R. J. & Torii, K. U. Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. Plant Cell 23, 3260–3275 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Adrian, J. et al. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev. Cell 33, 107–118 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Jun, J. et al. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol. 154, 1721–1736 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Vaten, A., Soyars, C. L., Tarr, P. T., Nimchuk, Z. L. & Bergmann, D. C. Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the Arabidopsis stomatal lineage. Dev. Cell 47, 53–66 (2018).

  22. 22.

    Shinohara, H., Moriyama, Y., Ohyama, K. & Matsubayashi, Y. Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs. Plant J. 70, 845–854 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Rodriguez-Villalon, A., Gujas, B., van Wijk, R., Munnik, T. & Hardtke, C. S. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Development 142, 1437–1446 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Kang, Y. H. & Hardtke, C. S. Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling. EMBO Rep. 17, 1145–1154 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Hazak, O. & Hardtke, C. S. CLAVATA 1-type receptors in plant development. J. Exp. Bot. 67, 4827–4833 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Hazak, O. et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. EMBO Rep. 18, 1367–1381 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Czyzewicz, N. et al. Antagonistic peptide technology for functional dissection of CLE peptides revisited. J. Exp. Bot. 66, 5367–5374 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Anne, P. et al. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. Development 145, dev162354 (2018).

    Article  Google Scholar 

  29. 29.

    Shiu, S. H. & Bleecker, A. B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl Acad. Sci. USA 98, 10763–10768 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    Song, W., Han, Z., Wang, J., Lin, G. & Chai, J. Structural insights into ligand recognition and activation of plant receptor kinases. Curr. Opin. Struct. Biol. 43, 18–27 (2016).

    Article  Google Scholar 

  31. 31.

    Matsubayashi, Y. Posttranslationally modified small-peptide signals in plants. Annu. Rev. Plant Biol. 65, 385–413 (2014).

    Article  Google Scholar 

  32. 32.

    Song, W. et al. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Res. 26, 674–685 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Santiago, J. et al. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 5, e15075 (2016).

    Article  Google Scholar 

  34. 34.

    Ma, X., Xu, G., He, P. & Shan, L. SERKing coreceptors for receptors. Trends Plant Sci. 21, 1017–1033 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Zhang, H., Lin, X., Han, Z., Qu, L. J. & Chai, J. Crystal structure of PXY–TDIF complex reveals a conserved recognition mechanism among CLE peptide–receptor pairs. Cell Res. 26, 543–555 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Kumari, A., Jewaria, P. K., Bergmann, D. C. & Kakimoto, T. Arabidopsis reduces growth under osmotic stress by decreasing SPEECHLESS protein. Plant Cell Physiol. 55, 2037–2046 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Nimchuk, Z. L., Tarr, P. T., Ohno, C., Qu, X. & Meyerowitz, E. M. Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. Curr. Biol. 21, 345–352 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Hu, C. et al. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat. Plants 4, 205–211 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Alberts, B. J. A. et al. Molecular Biology of the Cell (Garland Science, New York, 2014).

    Google Scholar 

  41. 41.

    Gordon, M. D. & Nusse, R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    Shpak, E. D., McAbee, J. M., Pillitteri, L. J. & Torii, K. U. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290–293 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Hara, K., Kajita, R., Torii, K. U., Bergmann, D. C. & Kakimoto, T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 21, 1720–1725 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Wang, Z. P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).

    Article  Google Scholar 

  47. 47.

    Motohashi, K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol. 15, 47 (2015).

    Article  Google Scholar 

  48. 48.

    Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    CAS  Article  Google Scholar 

Download references


Special thanks to H. Fukuda and Y. Kondo for providing us with all of the synthetic CLE peptides, Q.-J. Chen for the CRISPR vector (pHEE401E), K. Torii, D. Bergmann, S. Hou and the Arabidopsis Biological Resource Center seed stock centre for mutant seeds, and H. Deng and Y. Xu for mass spectrometry analysis. We thank K. Tsujimura for making vectors containing histone H2BsfGFP and mNEONGREEN optimized for A.thaliana. We thank Y. Matsubayashi and H. Shinohara for providing us with bam1-4 and bam1-4clv1-101 mutants, discussions and preliminary experiments, and B. Morris and A. Deneve for advice on English usage. This work was supported by Grant-in-Aid for Scientific Research (B) number 25291060, Innovative Areas grant numbers 25113006 and 18H04837 to T.K. and the Ministry of Science and Technology of China (2015CB910200) to J.C.

Author information




P.Q., W.S., T.Y., A.M., G.W. and T.I. performed the experiments. P.Q., T.I., S.S., J.C. and T.K. designed the research. P.Q., W.S., J.C. and T.K. wrote the manuscript.

Corresponding authors

Correspondence to Jijie Chai or Tatsuo Kakimoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–21 and Supplementary Tables 1–3.

Reporting Summary

Supplementary Video 1

Periclinal cell divisions of xylem precursor cells in wild type.

Supplementary Video 2

Periclinal cell divisions of xylem precursor cells in cle9-c1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, P., Song, W., Yokoo, T. et al. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nature Plants 4, 1071–1081 (2018).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing