Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization

Abstract

MIKC classic (MIKCC)-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKCC-type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKCC-type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKCC-type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Localization of MIKCC-type MADS-domain proteins fused with reporter proteins.
Fig. 2: Morphological comparisons between the wild-type and deletion mutant lines.
Fig. 3: Comparisons of gametophores from the overexpression lines generated using the β-oestradiol MIKCC-type MADS-box gene induction system.
Fig. 4: Effects of the cuticle and elongated internodes on the defects in external water conduction.
Fig. 5: Frequency of sporophyte formation by gametophores and percentages of archegonia with sperm entry in the wild-type and the deletion mutant lines.
Fig. 6: Sperm movement is defective in the deletion mutant lines.

References

  1. 1.

    Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Schwarz-sommer, Z., Huijser, P. & Nacgen, W. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250, 931–936 (1990).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Pellegrini, L., Tan, S. & Richmond, T. J. Structure of serum response factor core bound to DNA. Nature 376, 490–498 (1995).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Huang, K. et al. Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. EMBO J. 19, 2615–2628 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Henschel, K. et al. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19, 801–814 (2002).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Smaczniak, C., Immink, R. G. H., Muiño, J. M., Blanvillain, R. & Busscher, M. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl. Acad. Sci. USA 109, 1560–1565 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wu, M. et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc. Natl. Acad. Sci. USA 109, 3576–3581 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Dornelas, M. C., Patreze, C. M., Angenent, G. C. & Immink, R. G. H. MADS: the missing link between identity and growth? Trends Plant Sci. 16, 89–97 (2011).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Smaczniak, C., Immink, R. G. H., Angenent, G. C. & Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081–3098 (2012).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Tanabe, Y. et al. Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proc. Natl. Acad. Sci. USA 102, 2436–2441 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. 111, E4859–E4868 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Barker, E. I. & Ashton, N. W. A parsimonious model of lineage-specific expansion of MADS-box genes in Physcomitrella patens. Plant Cell. Rep. 32, 1161–1177 (2013).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gramzow, L. & Theissen, G. A hitchhiker’s guide to the MADS world of plants. Genome Biol. 11, 214–225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Harrison, C. J. Development and genetics in the evolution of land plant body plans. Phil. Trans. R. Soc. Lond. B. 372, 1–12 (2017).

    Google Scholar 

  16. 16.

    Hohe, A., Rensing, S. A., Mildner, M., Lang, D. & Reski, R. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-Box gene in the moss Physcomitrella patens. Plant Biol. 4, 595–602 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Singer, S. D., Krogan, N. T. & Ashton, N. W. Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell. Rep. 26, 1155–1169 (2007).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Quodt, V., Faigl, W., Saedler, H. & Münster, T. The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens. Gene 400, 25–34 (2007).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Tapia-López, R. et al. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol. 146, 1182–92 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Borner, R. et al. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24, 591–599 (2000).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Michaels, S. D. et al. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J. 33, 867–874 (2003).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Gramzow, L. et al. Selaginella genome analysis – entering the ‘homoplasy heaven’ of the MADS world. Front. Plant Sci. 3, 1–14 (2012).

    Article  Google Scholar 

  23. 23.

    Sakakibara, K., Nishiyama, T., Deguchi, H. & Hasebe, M. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol. Dev. 10, 555–566 (2008).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–90 (2010).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Wuest, S. E. et al. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Phil. Trans. R. Soc. Lond. B 109, 13452–13457 (2012).

    CAS  Google Scholar 

  26. 26.

    Maoiléidigh, D. S. Ó. et al. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell. 25, 2482–2503 (2013).

    Article  Google Scholar 

  27. 27.

    Seo, E. et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell. 21, 3185–3197 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tao, Z. et al. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J. 70, 549–561 (2012).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, 1–26 (2013).

    Article  Google Scholar 

  30. 30.

    Kubo, M. et al. System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. PLoS. One 8, 1–13 (2013).

    Article  Google Scholar 

  31. 31.

    Proctor, M. C. F. Bryophyte Biology 2nd edn (eds Goffinet, B. & Shaw, A. J.) 237–268 (Cambridge Univ. Press, Cambridge, 2008).

  32. 32.

    Li-beisson, Y. et al. Acyl-lipid metabolism. Arab. Book 11, e0161 (2013).

    Article  Google Scholar 

  33. 33.

    Renault, H. et al. A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8, 1–8 (2017).

    Article  Google Scholar 

  34. 34.

    Imaizumi, T., Kadota, A., Hasebe, M. & Wada, M. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell. 14, 373–386 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tanahashi, T., Sumikawa, N., Kato, M. & Hasebe, M. Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development 132, 1727–1736 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Miyamura, S., Matsunaga, S. & Hori, T. High-speed video microscopical analysis of the flagellar movement of Marchantia polymorpha sperm. Bryol. Res. 8, 79–83 (2002).

    Google Scholar 

  37. 37.

    Pazour, G. J., Agrin, N., Leszyk, J. & Witman, G. B. Proteomic analysis of a eukaryotic cilium. J. Cell. Biol. 170, 103–113 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Horst, N. A. et al. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nat. Plants 2, 1–6 (2016).

    Google Scholar 

  39. 39.

    Ortiz-ramírez, C. et al. Glutamate receptor-like channels are essential for chemotaxis and reproduction in mosses. Nature 549, 91–95 (2017).

    Article  PubMed  Google Scholar 

  40. 40.

    Hasebe, M., Wen, C. K., Kato, M. & Banks, J. a. Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proc. Natl. Acad. Sci. USA 95, 6222–6227 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Inaba, K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Gardner, L. C., O’Toole, E., Perrone, C. A., Giddings, T. & Porter, M. E. Components of a ‘dynein regulatory complex’ are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J. Cell. Biol. 127, 1311–1325 (1994).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Neesen, J. et al. Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum. Mol. Genet. 10, 1117–28 (2001).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Zhang, Z. et al. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol. Reprod. 74, 751–759 (2006).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, (2006).

  46. 46.

    Beike, A. K., Stackelberg, M., Von, Schallenberg-rüdinger, M., Hanke, S. T. & Follo, M. Molecular evidence for convergent evolution and allopolyploid speciation within the PhyscomitriumPhyscomitrella species complex. BMC Evol. Biol. 14, 1–19 (2014).

    Article  Google Scholar 

  47. 47.

    Nishiyama, T., Hiwatashi, Y., Sakakibara, K., Kato, M. & Hasebe, M. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res. 7, 9–18 (2000).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Ishikawa, M. et al. Physcomitrella cyclin-dependent kinase a links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell. 23, 2924–38 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Landberg, K. et al. The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant Physiol. 162, 1406–19 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol. 14, 1–17 (2013).

    Article  Google Scholar 

  51. 51.

    Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinforma. 14, 1–13 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Budke, J. M., Goffinet, B. & Jones, C. S. A hundred-year-old question: is the moss calyptra covered by a cuticle? A case study of Funaria hygrometrica. Ann. Bot. 107, 1279–1286 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ohara, A., Kato-minoura, T., Kamiya, R. & Hirono, M. Recovery of flagellar inner-arm dynein and the fertilization tubule in Chlamydomonas ida5 mutant by transformation with actin genes. Cell. Struct. Funct. 281, 273–281 (1998).

    Article  Google Scholar 

  54. 54.

    Greer, S. et al. The cytochrome P450 enzyme CYP96A15 Is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol. 145, 653–667 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kondo, S. et al. Primitive extracellular lipid components on the surface of the charophytic alga Klebsormidium flaccidum and their possible biosynthetic pathways as deduced from the genome sequence. Front. Plant Sci. 7, 1–15 (2016).

    Article  Google Scholar 

  56. 56.

    Kamiya, R. & Witman, G. B. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J. Cell. Biol. 98, 97–107 (1984).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Aono for constructing the GUS insertion and deletion mutant lines, T. Nishiyama, K. Sakakibara, Y. Sakata and the members of the Division of Evolutionary Biology for discussion, T. Maeda for advice on transcriptome analysis, K. Yamaguchi and A. Akita for next-generation sequencing, and Y. Matsumoto for preliminary observation of external water conduction. Plant cultivation, microscopy and transcriptome analyses were supported by the Model Plant Research Facility, the Spectrography and Bioimaging Facility and the Data Integration and Analysis Facility in the National Institute for Basic Biology. Electron microscopy was supported by the EM facility in the National Institute for Physiological Sciences. This work was partially funded by MEXT and JSPS KAKENHI grants to M.H., T.M. and R.K. (16H06378), to M.H. (17H06390) and to Y.S.-S. and H.O. (15H04393), and a CREST JST grant to M.K.

Author information

Affiliations

Authors

Contributions

S.K., R.K., Y.T., T.M. and M.H. conceived and designed the research in general. S.K., Y.S.-S., M.S., H.O. and M.H. designed the experiments on the cuticle. S.K., R.K., Y.S.-S., S.S., Y.K. and Y.H. performed the experiments. Every author analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Mitsuyasu Hasebe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–31, Supplementary Table 6 and Supplementary References.

Life Sciences Reporting Summary

Supplementary Table 1

Differentially expressed genes in gametophores between the wild type and the sextuple deletion mutant line.

Supplementary Table 2

Comparisons between differentially expressed genes of the Physcomitrella sextuple deletion mutant line and Arabidopsis mutants of MIKCC-type MADS-box genes.

Supplementary Table 3

Differentially expressed genes in antheridia between the wild type and the sextuple deletion mutant line.

Supplementary Table 4

Differentially expressed genes in antheridia between the wild type and the triple deletion mutant line.

Supplementary Table 5

Flagellum-related genes whose transcript levels decreased in both the sextuple deletion mutant line and the triple deletion mutant line.

Videos

Supplementary Video 1

Real-time movement of Evans blue solution up the wild-type gametophore. The base of the gametophore was dipped in the solution.

Supplementary Video 2

Real-time movement of Evans blue solution up the sextuple deletion mutant gametophore. The base of the gametophore was dipped in the solution.

Supplementary Video 3

Slow-motion movie of the movement of Evans blue solution in a wild-type gametophore. The base of the gametophore was dipped in the solution.

Supplementary Video 4

Real-time movement of a wild-type sperm observed using dark-field microscopy.

Supplementary Video 5

Real-time movement of a sperm from the sextuple deletion mutant line observed using dark-field microscopy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koshimizu, S., Kofuji, R., Sasaki-Sekimoto, Y. et al. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization. Nature Plants 4, 36–45 (2018). https://doi.org/10.1038/s41477-017-0082-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing